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Executive Summary

This document presents our results for predicting energy consumption using up to
144 channels of sensor data collected from three fully automated houses located at the
Campbell Creek Subdivision of Knoxville, TN in coordination with the Tennessee Val-
ley Authority (TVA) and Oak Ridge National Laboratory (ORNL). Using this sensor
information, we apply ten different machine learning methods to predict current and
future hourly electrical energy consumption. The machine learning algorithms tested
on these home are Linear Regression (REG); Feed Forward Neural Networks (FFNN);
Support Vector Regression (SVR); Least Squares Support Vector Machines (LSSVM);
Hierarchical Mixtures of Experts (HME) with REG, FFNN, LSSVM Experts; and
Fuzzy C-Means (FCM) with REG, FFNN, LSSVM Experts. We studied each learner’s
predictive capabilities on all three homes and show that data-driven models may be
a viable alternative to complex simulation systems, such as the current Department
of Energy (DOE) simulation standard, Energy Plus (E+), which require experts to
configure and calibrate simulations for each building. Our results shows that LSSVM
is the best machine learning technique for predicting next-hour electrical consumption
on this data set. To the best of our knowledge, these models establish the first hourly
prediction results for residential buildings.

We tested the aforementioned machine learning techniques on the American Soci-
ety of Heating Refrigerating and Air Conditioning Engineer’s (ASHRAE) Great Energy
Prediction Shootout I competition commercial buildings data set, as well as two ad-
ditional machine learning methods – Relevance Vector Machines (RVM) and Hidden
Markov Experts (HiddenME) with FFNN Experts. The results validate the techniques
in two ways. First, the learners are consistent with the existing literature (FFNNs are
best for predicting commercial building electrical consumption). Second, the learners
are implemented correctly since results do not differ greatly from the ASHRAE results.
The Coefficient of Variance (CV) range for the prediction of the next hour’s electri-
cal consumption in our initial residential results are 20% to 30%, while commercial
prediction results range from 8% to 12%.

In the near term, few buildings will have 100+ channels of sensor data so it is
necessary to identify a subset of the most predictive sensors. We employed two model
selection techniques, Stepwise Selection (SS) and a Genetic Algorithm (GA) with an
Information Complexity (IC) objective function, which allow us to combine predictive
accuracy, model complexity, and robustness in the subset selection process. Tests
quantitatively verified that setting missing sensor data to zero was more effective than
removing sensors with missing data, and allowing learning on 3 hours of previous data
was better than Markov Order 1 or 2. Testing on each individual house and across
all houses shows that the GA consistently identifies the best sensor subsets, and that
it is possible to obtain better performance by combining its best models into a single
model through a weighted voting mechanism. We employed brute-force computation
to identify the best sensor subset from all possible subsets with sizes one through four
(combination 144 choose 4 sensor sets tested). Comparing these “Restricted Ground
Truth” subsets against our techniques quantifies the trade-off between machine learning
approximations and the exact solution for the best subset, which is computationally
infeasible for all but the smallest set of sensors.
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Combining these machine learning algorithms and subset selection techniques allows
us to address a key criticism against data driven methods – that each system is designed
specifically for one target area or data set and is not re-deployable. It is anticipated that
determining the best sensors and fully automated data-driven energy modeling methods
will become a much more cost-effective solution than the business-as-usual modeling
methods as additional channels of data become available via smart meter deployment,
wireless sensor cost drops, and the increasing proliferation of smart devices.
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1 Introduction

Residential and commercial buildings constitute the largest sector of US primary energy
consumption at 40% [36]. Building energy efficiency is often described as the “low hanging
fruit” for reducing this consumption and the requisite greenhouse gas emissions. Building
energy modeling is a crucial tool in the development of informed decisions regarding the
augmentation of new and existing buildings. Whole building energy modeling is currently
utilized for several purposes: identifying energy consumption trade-offs in the building de-
sign process, sizing components (e.g., HVAC) for a specific building, optimizing control
systems and strategies for a building, determining cost-effective retrofit packages for existing
buildings, and developing effective building codes, tax/rebate incentives and Research, De-
velopment, Demonstration, and Deployment (RDD&D) roadmap activities required to meet
energy reduction goals set by numerous organizations, utility companies deferring infrastruc-
ture upgrades, and local/state/federal governments.

There are two general types of energy modeling: traditional “forward” modeling and “in-
verse” modeling. Most energy modeling software are “forward” models, which take as input
parameters such as weather data, building geometry, envelope composition with material
properties (e.g., thermal conductivity, specific heat, etc.), equipment systems with compo-
nent properties, and operating schedules. The software then uses an engineering model to
quickly step forward through simulated time in order to calculate the energy consumption of
the specified building. There are hundreds of these software packages available; twenty of the
most popular programs, including the world’s most popular DOE-2 and the next-generation
code EnergyPlus, have been contrasted previously [8].

“Inverse” modeling, on the other hand, takes as input known energy use and potentially
other variables (e.g., typical or actual outdoor temperature). The software then uses a
statistical model to estimate portions of energy expended for different purposes (e.g., heating
or cooling) as well as potentially any of the inputs traditionally used for “forward” modeling.

Sensor-based energy modeling can be viewed as a hybrid of the “forward” and “inverse”
modeling approaches. In this data-driven approach, sensor readings are the input and codify
the state of the weather, building envelope, equipment, and operation schedules over time.
Through the application of machine learning algorithms, an approximation of the engineering
model is derived statistically.

Both forward and inverse modeling approaches, individually, suffer from several prob-
lems that are mitigated, if not solved, through sensor-based energy modeling. First, very
few design firms have the expertise and can absorb the time and cost necessary to develop
a thorough set of inputs during the design phase of a building. Most do so primarily for
the largest of projects, despite the fact that the most important energy-consuming deci-
sions are made during this phase and are least costly to remedy during early design. While
sensor-based energy modeling does require existing sensor data, and thus implies an exist-
ing building, machine learning software trained on data from a similar reference building
can function as an approximation engine and may provide sufficiently accurate results for
quick feedback during early, iterative building design. Second, there is always a gap be-
tween the as-designed and as-built building. During construction, changes are made out of

9



necessity, convenience, or negligence (e.g., lack of insulation in a corner) and many changes
are very rarely communicated to designers or energy modelers. Sensors obviously eliminate
this problem by measuring actual state of the building rather than a designer’s intentions.
Third, sufficient knowledge is rarely available to accurately classify the dynamic specificities
of equipment or a given material. Most energy modelers use the ASHRAE Handbook of
Fundamentals [2] to estimate thermal and related properties based on typical values. Many
others use the manufacturer’s label information when available. However, few modelers put
the materials and equipment through controlled laboratory conditions, or the appropriate
ASTM test method, to determine properties of the specimen actually used in the building.
The sensor-driven approach can not only capture the current/actual performance of the
material, but also its degradation over time. Fourth, traditional modeling approaches can
involve manually defining thousands of variables to codify an existing building. Since multi-
ple experts may encode a specific building in many different ways, the large required input
space lends itself to problems with reliability/repeatability and ultimately validity. Sensors
are much more reliable and repeatable in reporting measured data over time, until a sensor
or data acquisition system fails. Fifth, both the inverse statistical model and forward engi-
neering models, by their very nature, necessarily require fixed assumptions and algorithmic
approximations. Machine learning allows asymptotic approximation to the “true” model of
the data, limited solely by the amount or quality of data provided, the capabilities of the
algorithm utilized, or the time available to compute/learn from the available data.

For all its advantages, sensor-based energy modeling also introduces some of its own
concerns and limitations. First, the additional cost associated with acquisition and de-
ployment of sensors is not required by previous modeling approaches. Sensor development
and costs are dropping according to the same transistor density doubling every 18 months
as defined by Moore’s Law [30]. Increasingly sophisticated peel-and-stick, wireless mesh,
energy-harvesting, system-on-a-chip sensors are becoming readily available. While the in-
crease in capabilities and reduction in costs continue, it is currently infeasible to heavily
instrument a building cost-effectively. Second, the number, type, and placement of sensors
required to sufficiently capture the state of different building types is an open question. This
article shows that this problem can be addressed through selection of an optimal subset of
140 sensors for predicting hourly energy consumption for 3 residential buildings, but extrap-
olation across building types is unproven and sensor counts/types would vary based upon the
metric(s) being predicted. It is anticipated that shared, web-enabled databases of heavily
instrumented buildings will help resolve this current issue. Third, sensors, data acquisition
systems, and the physical infrastructure upon which they rely can be unstable and result in
missing or corrupted sensor data values. To mitigate this real-world issue, intelligent qual-
ity assurance and control algorithms [15] can be applied to detect and/or correct corrupted
sensor values. The sensor pre-processing system we currently use notifies assigned personnel
via email messages for data channels exhibiting out-of-range errors, using simple statistical
tests. Lastly, determining the best machine learning algorithm for a given learning task is an
open question. While there exist taxonomies for classifying problem types and appropriate
machine learning algorithms [29], rarely is there a known algorithm that is best for solving
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a given problem (e.g., predicting next hour energy usage).
There are numerous sensor-based works which focus on predicting current and future

electrical consumption for commercial buildings [21, 19, 22]. In addition, these studies have
established which techniques perform well at modeling commercial electrical consumption.
However, very little sensor-based work focuses on modeling electrical consumption for res-
idential buildings, rather than commercial buildings. In fact, most studies conducted with
residential buildings model monthly electrical consumption [20], while commercial building
studies model hourly consumption. This means the few established methods for residential
buildings are only tested and verified on monthly data. Therefore, there is a need to explore
additional techniques on higher granularity data sets, and establish which techniques truly
perform best at modeling residential electrical consumption.

The gap between the residential and commercial studies stems from the fact that residen-
tial data sets lack granularity and are generally collected from monthly utility statements.
In this work, we narrow the gap between these studies by exploring ten different machine
learning techniques, and determining which ones are best for predicting future hourly elec-
trical consumption within residential buildings. We achieve this by using a new residential
data set, leveraging the proven methods from the literature for commercial buildings, and
introducing new techniques that have not been previously applied to this domain.

The remainder of the paper is organized as follows: Section 2 discusses related work in
the area of sensor-based machine learning applied to building energy modeling; Section 3
provides a technical overview of the different machine learning algorithms we explore within
this work; Section 4 presents a detailed description of the residential data set, experimental
design, and evaluation criteria; Section 5 presents results for predicting future residential
electrical consumption, as well as results that validate the machine learning algorithms’
correctness; Section 6 presents sensor selection results; Section 7 provides discussion about
the results; and Section 8 presents our conclusions and future directions.

2 Related Work

Many researchers have explored machine learning alternatives for modeling electrical con-
sumption, both within commercial buildings and residential buildings. However, a majority
of the studies have focused on commercial buildings. A notable study that used commercial
building data is the Building Energy Predictor Shootout hosted by ASHRAE. The competi-
tion called for participants to predict hourly whole building electrical (wbe) consumption for
an unknown building using environmental sensors and user-defined domain knowledge. The
competition provided 150 competitors with data from September 1, 1989 until December 31,
1989 as training data, as well as testing data that had the target variables removed. Six
winners were selected from the submitted predictions [21].

The overall winner, [24], used a Feed Forward Neural Network (FFNN) with Auto Rel-
evance Detection (ARD). The author was not sure which inputs or variables were most
beneficial for predicting the specified targets. Therefore, the author devised a method for
exploring a wide variety of different inputs that would minimize the error caused by irrele-
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vant inputs. This Auto Relevance Detection process drives the weights for irrelevant inputs
toward zero and prevents the weights for other inputs from growing too large or overpowering
the solution. This is achieved by reformulating weight regularization to obey a probabilistic
model, where all parameters follow prior distributions and the weights are inferred using
Bayesian inference. The results presented from this prior work provide strong incentive for
exploring how effective FFNNs are at predicting future residential electrical consumption.

Another winner used Piecewise Linear Regression [16]. The authors created three differ-
ent linear functions for predicting wbe. The first model is dedicated to workdays, the second
is dedicated to weekends, and the third is dedicated to modeling holidays. These models
were combined using the provided temporal information: day, month, year, and hour. How-
ever, the method used in this work requires explicit temporal domain knowledge about the
particular application area. Given that we lack such temporal domain knowledge for resi-
dential domains, we decided to explore an automated Piecewise Linear Regression process.
We apply Hierarchical Mixture of Experts (HME) with Linear Regression, because it uses
the training data to automatically build and integrate multiple linear models. This method
is described in Section 3.6 in greater detail.

[12] used an ensemble of FFNNs, which involved training multiple FFNNs and combining
them by averaging their predictions. The predictions for each FFNN were equally weighted
and the networks were trained using the same training data, and possibly different initial-
izations. This method assumes that all FFNN responses are equally important, which may
harm or not improve accuracy over a single network. This can harm accuracy, especially if
a majority of the FFNNs learn the same errors, and only a few networks learn to correct
those errors. Therefore, we decided to explore a more balanced and general method for mix-
ing multiple FFNNs. The HME approach, which we previously mentioned, combined with
FFNN Experts, accomplishes the same task, except the predictions are combined based on
the likelihood that each network produces the correct prediction.

A more recent wbe prediction study with commercial buildings uses Support Vector
Machines (SVM) to predict monthly consumption [11]. Support Vector Machines are built
on the principle that minimizing structural risk produces a general model. In addition, SVMs
have a proven upper bound on the error rate for classification problems [37]. While we do
not know of a proven upper bound for regression problems, minimizing structural risk can
still produce general models. The results from this prior work and the known benefits from
SVMs lead us to the application of Support Vector Regression (SVR), which is SVM adapted
for Regression (Section 3.3).

[19] builds upon the success found with FFNN and explores selecting the most important
inputs and network structure for the Building Energy Predictor Shootout data. In addition,
the work explores another commercial building data set. The authors present impressive
results on both buildings, and out-performed the Shootout winner. However, the authors
provide little discussion about what allowed them to obtain better performance or the key
differences between other FFNN techniques. The results found within this study provide
further incentive to explore the application of FFNN to predicting residential electrical con-
sumption.
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Another recent work by [22], presents results for the Energy Predictor Shoot that are
better than the overall winner as well. This approach uses an Adaptive Neuro Fuzzy Inference
System (ANFIS), which deviates greatly from the previously published FFNN works. This
method combines partitioning rules from Fuzzy Systems with the properties of FFNNs, which
is similar to Fuzzy C-Means (FCM) with FFNN. However, the authors in this work fully use
the Fuzzy Systems by using multiple partitioning functions, while the FCM with FFNN in
our work uses a single partitioning function.

These studies on commercial buildings provide insight into successful techniques, many
of which have inspired several of the techniques we explore in this article. However, how
successful are these techniques on residential buildings? The studies that involve residential
buildings are generally conducted with monthly information collected from utility companies.
This means that most residential studies do not provide hourly predictions, which is fairly
different from our focus on predicting hourly wbe consumption. For instance, [20] focuses
on modeling commercial and residential buildings, but all the whole building energy (wbe)
measurements are only at a monthly resolution for all buildings. This restriction is created
by the fact that utility companies measure residential electrical consumption at monthly
intervals, while commercial electrical consumption is measured hourly.

Our research makes use of a new residential data set, called the Campbell Creek data
set, which gives us a unique opportunity to predict next hour wbe electrical consumption
for residential homes. The Campbell Creek data set contains approximately 140 different
sensor measurements collected every 15 minutes. We explain this data set in more detail in
Section 4.1. This data set provides a vast quantity of inputs that far surpasses the amount of
information used in the previous commercial and residential building studies. For example,
the Great Energy Prediction Shootout data set contains only 5 measurements per hour. This
means we are able to test existing techniques that were proven on previous smaller data sets,
and introduce new techniques that have not previously been applied to this field.

3 Approach

We have tested 10 different machine learning techniques on our residential data sets, and
we have tested 12 learners on the ASHRAE Building Energy Predictor Shootout data set.
In this section, we briefly outline the technical details for each individual learner. In addi-
tion, we discuss advantages, disadvantages, and technical benefits for each technique. We
present the techniques in the following order: Linear Regression; FFNN; SVR; Least Squares
Support Vector Machines (LS-SVM); Relevance Vector Machines (RVM); HME with Linear
Regression, FFNN, and LS-SVM Experts; Fuzzy C-Means with Linear Regression, FFNN,
LS-SVM; and Hidden Markov Experts (HiddenME) with FFNN.
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3.1 Linear Regression

Linear Regression is the simplest technique, and can and provide a baseline performance.
Linear Regression is based on fitting a linear function with the following form:

y = β1x1 + β2x2 + ...+ βnxn + βn

Here, y is the target value, x1, x2, ..., xn are the available inputs, and β represents the func-
tional weights. While this model is simplistic, it is used to establish a baseline performance
for predicting electrical consumption on our residential data sets. If a technique performs
worse than the baseline predictor, then it is most likely not appropriate for the data set.

3.2 Feed Forward Neural Network

As mentioned previously, previous works have shown that Feed Forward Neural Networks
(FFNN) are very capable at predicting electrical consumption. These previous works have
leveraged the fact that a FFNN can be used as a general purpose method for approximating
non-linear functions. That is, FFNN can learn to approximate a function f that maps
<m → < without making assumptions about the relationship between the input and outputs.

While a FFNN does not make assumptions about the inputs or outputs, it does require
the user to define the model’s structure, including the number of hidden layers and hidden
units within the network and any other associated parameters. In this work, we explore
a FFNN with a single hidden layer, which is the same overall structure as the previous
works. A FFNN with a single hidden layer for function approximation has the following
mathematical representation:

f(x) =
N∑
j=1

wjΨj

[ M∑
i=1

wijxi + wio

]
+ wjo

where N represents the total number of hidden units, M represents the total number of
inputs, and Ψ represents the activation function for each hidden unit. In this work we
selected tanh(x) as our activation function because other prior works have shown good
performance using this function [10, 39, 13, 19].

A FFNN’s weights are learned using gradient descent-based methods, such as Newton-
Raphson, by minimizing a user-specified error function. There are many possible error
functions, such as Mean Squared Error (MSE), Sum Squared Error (SSE), and Root Mean
Squared Error (RMSE). In this work, we use the SSE function.

However, a gradient descent learning approach poses two problems. The first problem
is over-fitting. The FFNN can adjust its weights in such a way that it performs well on
the training examples, but it will be unable to produce accurate responses for novel input
examples. This problem is addressed by splitting the training set into two parts – a set
used for training and a set for validation. When the error increases on the validation set,
the learning algorithm should halt, because any further weight updates will only result in
over-fitting the training examples.
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The second problem involves avoiding local minima and exploring the search space to find
a globally optimal solution. A local minimum is a point at which it is impossible to further
minimize the objective function by following the gradient, even though the global minimum
is not reached. However, it is not possible to determine if any particular set of weights is
a globally optimal solution or a local minimum. It is not possible to completely address
this problem, but it is possible to avoid shallow local minima by using momentum and an
adaptive learning rate. Momentum incorporates a small portion from the previous weight
changes into the current weight updates. This can allow the FFNN to converge faster and
to possibly step over shallow local minima. An adaptive learning rate dynamically changes
the gradient descent step size, such that the step size is larger when the gradient is steep
and smaller when the gradient is flat. This mechanism will allow the learning algorithm to
escape local minima if it is shallow enough.

3.3 Support Vector Regression

Support Vector Regression (SVR) was designed and developed to minimize structural risk
[32]. That is, the objective is to minimize the probability that the model built from the
training examples will make errors on new examples by finding a solution that best gener-
alizes the training examples. The best solution is found by minimizing the following convex
criterion function:

1

2
‖w‖2 + C

l∑
i=1

ξi + ξ∗i

with the following constraints:

yi − wTϕ(xi)− b ≤ ε+ ξi

wTϕ(xi) + b− yi ≤ ε+ ξ∗i

In the above equations, ε defines the desired error range for all points. The variables ξi and
ξ∗i are slack variables that guarantee that a solution exists for all ε. C is a penalty term used
to balance between data fitting and smoothness. Lastly, w are the weights for the regression,
and ϕ represents a kernel function for mapping the input space to a higher dimensional
feature space.

There is one major advantage within the SVR optimization formulation: there is a unique
solution which minimizes a convex function. However, the unique solution is dependent upon
providing C, ε, and the necessary parameters for the user-selected kernel function ϕ. There
are many techniques for selecting the appropriate parameters, such as grid search with
cross-validation, leave-one-out cross-validation, and many more. The work of [32] provides
a detailed overview of the different tuning techniques. In this work, all parameter settings
were determined via grid search with cross-validation using LIBSVM’s provided utilities [6].

However, SVR does have a potential disadvantage: scalability. The convex criterion
function is optimized using quadratic programming optimization algorithms. There are
many different algorithms and each has its own advantage and disadvantages [32], but the
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primary disadvantages are generally memory requirements and speed. However, the data
sets used in our work are not large enough for these issues to be a real concern.

3.4 Least Squares Support Vector Machine

Least Squares Support Vector Machines (LS-SVM) is very similar to SVR, but with two
notable differences. The first difference is the criterion function, which is based on least
squares. The second difference is that the problem constraints are changed from inequality
to equality. These differences allow the optimization function to be formulated as:

1

2
‖w‖2 + C

l∑
i=1

ξ2i

with the following constraint:

wTϕ(xi) + b+ ξi = yi

One advantage LS-SVM has over SVR is that this modified criterion function does not
require quadratic programming to solve the optimization problem. This allows LS-SVM to
find solutions much faster by solving a set of linear equations. The set of linear equations and
their solution are well documented in [33]. However, LS-SVM uses all data points to define
its solution, while SVR only uses a subset of the training examples to define its solution. This
means that LS-SVM loses the sparsity property, which may or may not affect the solutions’
ability to generalize. However, there are several works that address the sparsity issue through
pruning or via weighting the examples [34].

3.5 Relevance Vector Machine

Relevance Vector Machine (RVM) is a Bayesian approach to SVM. The method tries to find
the most general linear model with the following form:

f(x) =
N∑
i=1

wiK(xi, x) + wo

This is the same functional model used by SVM. However, the learning process and overall
objective function used to learn the model is completely different. This method assumes a
prior distribution over the weights, and uses this distribution for regularization and Auto
Relevance Detection (ARD) [35]. The ARD method is the same method used by the overall
winner for the Great Energy Prediction Shootout, which we discussed previously in Section
2.

The key advantage to this Bayesian approach is that the user specified hyper-parameters
found in the SVM formulation are removed. However, the method still requires one to
select the correct kernel function, K, and the appropriate parameter settings for that kernel
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Figure 1: An example Hierarchical Mixture of Experts model with depth 2 and branching
factor 2. This figure is provided by [18].

function. In addition, the RVM method learns the model by using EM. This methods EM
learning process is well documented in [35]. However, EM is only guaranteed to converge to a
locally optimal solution, while the SVM formulations guarantees a globally optimal solution
given the hyper-parameters.

In this work, we only apply RVM to the Great Energy Prediction Shootout data set, be-
cause we were unable to find the appropriate kernel parameters that would allow the learner
to converge on the residential data set. We are actively exploring methods for automatically
determining the appropriate kernel function and kernel parameters; however, this problem
is currently and open research topic.

3.6 Hierarchical Mixture of Experts

Hierarchical Mixture of Experts is a type of Neural Network that learns to partition an input
space across a set of experts, where the input space in our application is the raw sensor values.
These experts will either specialize over a particular region, or assist each other in learning
a region or regions. These HME models are very useful for exploring the possibility that
a data set contains multiple regimes or sub-populations. For example, a residential home’s
electrical consumption can vary according to the seasons – fall, winter, spring, and summer.
These variations may be best explained by separate individual models. An HME model tries
to discover these different sub-models automatically, and fit an Expert to each sub-model.
While the previous motivating example implies temporal based sub-model changes, the HME
model can only detect sub-model changes by using spatial differences, as well as, using each
expert’s ability to produce accurate predictions during training.

HME models are constructed using two types of networks: Gating and Expert networks.
Figure 1 presents an example HME with two layers of Gating networks and four Expert
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networks. This particular HME is modeled as:

µ =
∑
i

gi
∑
j|i

gj|iFji(x)

where gi represents the top level gating network’s output, gj|i represents the outputs from
the lower level gating networks, and Fji(x) represents the output from an Expert network.
This example model is easily extended to have additional Gating networks and Experts by
adding additional summations.

The Gating network probabilistically partitions the input space across either additional
Gating or Expert networks. The partitioning is achieved using the following softmax func-
tion:

gi =
eξi∑N
k=1 e

ξk

where ξ represents the Gating network outputs, gi is the normalized weight associated with
the ith sub-network, and N represents the total number of sub-networks. Each Gating
network approximates the conditional probability P (Z|X), in which Z represents the set
of direct sub-networks and X represents the set of observations. Approximating P (Z|X)
allows the Gating network to determine which Expert network or networks is more likely to
produce an accurate prediction.

Each Expert network represents a complete learning system. However, unlike a stan-
dalone learning system, each Expert is expected to specialize over different regions defined
by the Gating networks. In the original HME works, the only supported expert learner was
Neural Networks [17]; however, a later extension on the work introduced support for Lin-
ear Regression Experts [18]. While these works only presented Neural Network and Linear
Regression Experts, the learning procedures introduced in the extension do not limit the
Experts to only these learning systems. The only restriction placed on the Experts is that
they have an associated likelihood function. For example, the assumed likelihood function
in these previous works for regression problems is that each Expert’s error rate follows a
Gaussian distribution.

The original works present three different maximum likelihood learning algorithms. The
first algorithm is based on using gradient ascent. Using the HME shown in Figure 1 as an
example, all three algorithms attempt to maximize the following likelihood function:

L(Y |X, θ) =
∏
t

∑
i

g
(t)
i

∑
j

g
(t)
j|iPij(y

(t)|x(t), θij)

where Pij represents an Expert’s likelihood function, and θ represents parameters associated
with each Gating network and with each Expert.

The other two algorithms approach the problem as a maximum likelihood problem with
missing data. The missing or unobservable data is a set of indicator variables that spec-
ify the direction for partitioning the input space at each Gating network. If all indicator
variables were known, then maximizing the HME’s likelihood function is split into two sep-
arate problems [18]. The first problem is learning the parameters for each individual Gating
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network, while the second problem is training each Expert on the appropriate training ex-
amples. Given that it is generally impossible to know the exact value for each indicator
variable in advance, the original developers derived two different Expectation Maximization
(EM) [9] algorithms. The first algorithm is an exact EM algorithm, and the second algorithm
approximates the first algorithm.

The EM-based learning algorithms relax the original Neural Network Expert restriction,
because EM splits the learning process into two parts: Expectation and Maximization. The
Expectation piece approximates P (Z|X) for all Gating Networks, and the Maximization
part approximates all parameters for the Experts. The Maximization process is presented
as a weighted regression problem in both EM algorithms, which implies any learning system
that supports weighted examples can be used as an Expert. We utilize this property and
the robust LS-SVM work by [34] to integrate LS-SVM Experts in the HME framework.
The robust LS-SVM algorithm estimates a weight for each training example and solves a
weighted cost problem under the traditional LS-SVM framework. The training examples’
weights are estimated based on traditional robust regression methods. However, we can
substitute the weights generated by the EM algorithm for the robust LS-SVM weights, and
solve the same weighted cost problem. This allows us to explore the standard FFNN and
Linear Regression Experts, as well as LS-SVM Experts. In addition, HME with LS-SVM is
a more general implementation of the Mixture of Experts with LS-SVM presented in [23].
That work integrated LS-SVM experts using a single Gating network, while we are able to
support a hierarchy of mixtures.

3.7 Fuzzy C-Means with Local Models

An alternative approach to HME is to separate the learning process into two steps. The first
step is an unsupervised learning phase which uses clustering to approximate P (Z|X), and
the second step is to use each cluster to train the Experts. It is possible to use any clustering
algorithm, such as K-Means, Self-Organizing Maps, Hierarchical Clustering, etc. However,
a clustering algorithm that does not allow observations to belong to multiple clusters will
produce very rigid approximations. A rigid approximation will cause Experts to ignore large
sets of observations, which can cause the Experts to produce very poor models. This means
each Expert will be less likely to produce reasonable responses when accounting for errors in
the approximated P (Z|X). We avoid rigid approximations by using Fuzzy C-Means (FCM),
which allows for observations to belong to multiple clusters.

FCM is based on minimizing the following criterion function:

N∑
i=1

C∑
j=1

umij‖xi − cj‖2

where uij represents the probability that xi is a member of cluster cj, and m is a user-defined
parameter which controls how much an observation can belong to multiple clusters. The
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criterion function is minimized through an iterative process using the following equations:

cj =

∑N
i=1 u

m
ijxi∑N

i=1 u
m
ij

uij =
1∑C

k=1
‖xi−cj‖
‖xi−ck‖

2
m−1

Iterating over the above equations will produce N cluster centroids and a weight matrix
U . N represents the total number of user-defined clusters and each row in U represents
an instance of P (Z|X). The weight matrix can be used to train a Gating network or for
weighting the training examples when fitting the Experts. In this work, we choose to use
the second option, and use N cluster centers to approximate P (Z|X) for new observations
by computing the second equation.

This work explores using the same previously mention experts, Linear Regression; FFNN;
LS-SVM, for this two-step approach. In addition, the likelihood function requirement for
these Experts are removed. While this approach seems superior to the HME, it relies on the
critical assumption that the spatial relation between observations can approximate P (Z|X),
while HME approximates P (Z|X) by maximizing P (Y |X, θ).

3.8 Hidden Markov Experts

Hidden Markov Experts (HiddenME) is very similar to HME with a single gating function
and our FCM with local models approach. The key difference is that this method approxi-
mates P (Z|X) by maximizing P (Y |X, θ, S), where S represents a set of unobservable states.
This means the method assumes that the Experts change according to a Hidden Markov
Model [26]. That is to say, the Expert that is responsible for the next prediction is depen-
dent upon the Expert selected for the current prediction.

Under the Hidden Markov Model approach P (Z|X) is represented as P (St|X,St). This
means that the previously presented P (Z|X) is now approximated as the current belief
distribution across the hidden states. The learning process for this approach uses EM and is
documented in [38]. In addition, this approach requires that the user specifies the number
of hidden states, as well as the initial transition probabilities between these states. The
initialization for these parameters have very large impact on the overall learned model. In
this work, we use random initialization for the transition parameters, and explore different
numbers of hidden states. Lastly, we have not applied this method to the residential data
set, because it requires that all learning examples are presented in chronological order. This
makes it difficult to compare against the other methods, because our experimental design
randomize the training examples, and without the randomization we may not obtain the best
possible learners. We will address this issue by training all learners on the 2010 residential
dataset, and test on the data currently being collected from the same residential homes for
2011.
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3.9 Temporal Dependencies

In the realm of function approximation, temporal dependencies means that the target re-
sponse yt is dependent on past observations, xt−1, as well as current observations xt. These
temporal dependencies either follow a Markov order or are sparse. If the dependencies follow
a Markov order, then the response yt is dependent on previous complete sets of observations.
For example, if yt has temporal dependencies with Markov Order 2, then it is dependent on
xt, xt−1, xt−2. However, sparse temporal dependencies indicate that yt can be dependent
on any combination of past observations rather than a complete set. Exploring all possible
sparse temporal dependencies grows exponentially and is thus intractable.

Our work focuses on predicting future hourly electrical consumption. This means we can
only use observations xt−1, xt−2, etc., to predict yt. If we did not follow this constraint, we
would use future information to predict yt. Therefore, Markov order 1 models use observation
xt−1, order 2 models use observations xt−1 and xt−2, and so forth.

In previous works, researchers explored sparse temporal dependencies either with manual
statistical testing or automatically, by defining a feasible search space within the learning
system. The winner for the first Shootout, which we discussed previously, used ARD to
automatically determine the relevant inputs. The possible inputs included temporal depen-
dencies. However, the total number of available inputs for the competition was fairly small.
For example, the winner’s FFNN used 25 different inputs, while a single order 3 model uses
approximately 432 inputs. Therefore, we only consider the entire set of inputs, rather than
trying to search for the best inputs. We are currently exploring scalable automatic methods
that can help identify the sparse temporal dependencies; however, these methods present
considerable research challenges and are beyond the scope of this article.

3.10 Model Selection

Each presented learning system has a variety of different parameters. Some parameters are
estimated during the learning process, while others are user-defined parameters. In addition,
each different combination of learned parameters and user-defined parameters constitutes a
single model configuration. In order to determine which learning system performs best at
predicting residential electrical consumption, we need to select the best model configurations
for each technique and compare these best configurations. This type of comparison facilitates
a fair comparison across all techniques.

There are several different model selection techniques. For example, cross-validation
methods help find parameter estimates that can generalize to unseen data by periodically
testing the current model on a validation set. Another cross-validation method, called K-
Folds cross-validation, ensures that each data point is used as a testing example at least
once, and that the training and testing sets are fixed. This means that each learning system
can be compared using the same testing and validation sets, which is ideal for determining
how different user-defined parameters affect the models.

We use a combination of cross-validation and K-Folds cross-validation to select the best
predictive model for each technique. We separate out a cross-validation set from the allocated
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training data, which leaves each learning system with a training set, a validation set, and a
testing set. However, the Linear Regression models do not utilize the validation set, because
the parameters are estimated using a non-iterative maximum likelihood method. We then
select the model from each technique that has the best performance across all the testing
sets. This allows us to identify models that generalize well to unseen data, and determine
which user-defined parameters settings are best for each learning system.

We use a entirely different approach to Model Selection for addressing sensor selection.
We use a Model Selection technique called the Wrapper Model Selection method [14]. This
method performs model selection by attempting to reduce the number of external parameters
used by the learning system. Wrapper techniques provide a method for searching through
different parameter configurations, using the given learning system to judge the quality of
each configuration.

This concept is directly applicable to the sensor selection problem, in which the different
parameter configurations are sensor subsets the learner can use to predict future energy
consumption. In other words, one can restrict which sensors the learning system uses in
the learning process, in order to determine which sensor subset produces the most general
model.

3.11 Stepwise Selection for Sensor Selection

As mentioned previously, Stepwise Selection is a greedy search algorithm that attempts to
minimize bias by only including parameters that contribute statistically significant improve-
ments in performance. This process is carried out iteratively using two passes across the
parameter space, where the first pass is a parameter inclusion step and the second pass is
a parameter elimination step. The parameter inclusion pass starts by initializing an initial
parameter set m, which is generally empty, and iterates over the parameter space in a fixed
linear order x1, x2, ...xn. At each iteration i, the algorithm tests to see if the current model
m is statistically worse than the new model m′ that includes parameter xi. Model m and
model m′ are compared using the F-Test to either accept or reject the null hypothesis that
parameter xi does not increase model m’s performance. If the null hypothesis is rejected
with error confidence ρ, then the parameter xi is added to the current model m.

The parameter elimination pass starts with model m after completing the parameter
inclusion step, and iterates over the parameter space in the same fixed linear order. However,
at each iteration i, the algorithm tests to see if the current model m is statistically better
than model m′′ that does not include parameter xi. Model m and model m′′ are compared
using the same F-Test procedure, but the null hypothesis is now reformulated as m′′ having
worse performance than m. If there is not sufficient evidence to reject the null hypothesis
with error confidence ρ′, then parameter xi is removed from model m.

The inclusion and elimination steps can be repeated until it is either no longer possible to
add or remove a parameter from the subset, or for a fixed number of iterations if convergence
is not possible. In this work, the Stepwise Selection procedure is performed until convergence,
with ρ set to five percent and ρ′ set to ten percent.
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3.12 Model Criteria

There are many different Model Criteria functions that combine a goodness-of-fit objective
with a model complexity objective. While each Model Criteria measures model complexity
differently, all the functions measure goodness-of-fit using the same criteria, −2 log(L(θ)),
where L(θ) is the maximum likelihood function using θ as the parameter set. Since the
Wrapper methods in this report use a Linear Regression Model as the learning system, the
general maximum likelihood function should be expressed as follows:

L(θ) = L(Y |β,Σ) =
1

2πk/2|Σ|k/2
e−

(Y−Xβ)TΣ−1(Y−Xβ)
2

where k is the dimensionality of the multivariate normal (i.e., the number of parameters
used in the regression model) and β is a coefficient matrix used to map the input X to a
multivariate response Y . However, since our response variable Y (energy consumption) is
univariate, the maximum likelihood equation simplifies to the following:

L(y|β, σ2) =
1

(2πσ2)k/2
e−

(y−Xβ)T(y−Xβ)

2σ2

Given that all Model Criteria in this report are applied to univariate Linear Regression
Models, one can replace L(θ) with L(y|β, σ2) to frame all Model Criteria for measuring
regression complexity.

The first Model Criteria function was defined by Akaike in 1973, called AIC (Akaike’s
Information Criterion) [1]. This definition proposed the evaluation of a model based on the
previous likelihood function L(θ) and a penalty term that attempts to correct the model’s
bias, under the assumption that the model that best minimizes log(L(θ)) and minimizes
model complexity is the best model. AIC’s Criteria function is as follows:

AIC(θ) = −2 log(L(θ)) + 2k

where k is the number of free parameters that are estimated in the model. After the in-
troduction of AIC, many other Model Criteria functions were introduced, such as Bayesian
Information Criterion [31], Minimum Description Length [27], Consistent AIC [3], and many
more. [28] has illustrated that BIC, MDL, CAIC, and many other Model Criteria functions
are able to find the true model, if a true model exists, or some approximate parsimonious
model, otherwise. However, these methods only compute model complexity in terms of the
number of estimated parameters, rather than also including the effect of parameter interac-
tions.

Given that these previous Model Criteria functions compute model complexity without
considering parameter interactions, we decided to use the Information Complexity (ICOMP)
[5] Criteria. To the best of our knowledge, ICOMP is the only Model Criteria function that
measures parameter interaction without the risk of under-fitting the model like CAICF([3]).
The ICOMP Criteria function is defined as follows:

ICOMP (IFIM) = −2 log(L(θ)) + 2C(F−1(θ))
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where IFIM stands for Inverse Fisher Information Matrix and C is a specified complexity
function that maps F−1(θ), the estimated Inverse Fisher Information Matrix, under the
parameters θ, to a single complexity score. Note that lower values of the ICOMP function are
preferred. There are many different variants of ICOMP, each with a different C complexity
function and each with a different approximation for Σ(θ) [4]. In this report, we make use of
ICOMP (IFIM)Misspec, since it is scale invariant, considers skewness and kurtosis within the
model, and helps protect against over-fitting when the L(θ) function is incorrectly specified
[4]. ICOMP (IFIM)Misspec is defined as follows:

ICOMP (IFIM)Misspec = −2 log(L(θ)) + 2C1(Cov(θ)Misspec)

where Cov(θ)Misspec and C1(Σ) are defined as:

Cov(θ)Misspec = F−1RF−1

C1(Σ) =
p

2
log(

tr(Σ)

p
)− 1

2
|Σ|

Additionally, [4] illustrates that when applying ICOMP (IFIM)Misspec to regression models,
F−1 and R are defined as:

F−1 =

[
σ2(XTX)−1 0

0 2σ4

n

]
R =

[
1
σ4X

TD2X X ′1 Sk
2σ3

(X ′1 Sk
2σ3 )′ (n−q)(Kt−1)

4σ4

]
where D2 = diag{ε21, ..., ε2n} and ε2i is the squared residual error for target yi, X represents
the input data to the regression model, Sk is skewness within the residual errors, and Kt is
kurtosis.

3.13 Genetic Algorithm for Sensor Selection

A Genetic Algorithm solves a search problem by considering several candidate solutions in
parallel and combining good solutions from the pool of candidate solutions to create new
candidate solutions. The hope is that each time the algorithm creates new candidate solu-
tions, they will be superior to the previous candidate solutions. This process is implemented
through a set of fairly simplistic, but powerful, operations called selection, crossover, and
mutation, which are performed on the current population, or candidate solution set, with
respect to a user-defined fitness function that measures solution quality. A candidate solu-
tion for our Genetic Algorithm Wrapper for sensor selection is a binary string with a length
equal to the number of sensors within the dataset; sensor xi is included in the solution if the
solution has a 1 at index i.

The selection operator determines which candidate solutions will enter the new popula-
tion without modification and which solutions will be used for constructing new candidate
solutions. This process can either uniformly select solutions from the population, select so-
lutions according to a probability distribution derived from each solutions’ quality, or select
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according to a probability distribution defined over the current solution rankings. The latter
option is used in this report.

The crossover operation uses the selection operator to pick two candidate solutions from
the population and to probabilistically create either one or two candidate solutions. There are
many different types of crossover operators; the method used in this report is called scattered
crossover. This method selects two candidate solutions p1 and p2 from the population and
generates a random binary string. The new candidate solution copies all elements from p1
that correspond with a 1 in the binary string and all elements from p2 that correspond with
a 0 in the binary string.

Mutation uses the selection operation to pick a small percentage of the candidate solu-
tions, roughly one or two percent, and then probabilistically determines if it should alter the
selected candidate solutions. The alteration is based on a Bernoulli experiment performed
on each binary bit of the selected candidate solutions. This means that with probability p,
a single binary bit could change from 1 to 0 or vice versa. There is much controversy over
whether or not mutation contributes to finding good candidate solutions, so p is generally
set fairly small. In this particular application, p is set to 0.01.

A Genetic Algorithm combines these operators to optimize a fitness function, where the
fitness function measures the quality for a candidate solution. In this particular application,
we follow the work presented in [4], which suggests and illustrates using the previously
mentioned ICOMP (IFIM) measure as the fitness function, because of its previously stated
beneficial properties.

3.14 Sensor Ranking

Since we are interested in finding which sensors are most useful for building a general energy
prediction model, we can frame the problem as a model selection problem. However, each
Wrapper method might produce a different best model answer when presented with different
subsets of the original dataset. For example, if one uses 75% of a dataset for learning and the
remaining 25% for testing purposes, the learning system can provide consistently different
best models each time one resamples the data into learning and testing sets. This leaves two
options — search for the best model among all possible best models or derive a method to
combine the best models seen so far to construct a ranking for each selected sensor.

Option one is a viable option, because we are able to use ICOMP (IFIM) to directly
compare all seen best models, by selecting the model with the lowest ICOMP (IFIM) score.
However, there is an infinite number of best models, and it is not guaranteed that one will
find the true best model. As will be seen in Section 6, the best model may not always have
the smallest ICOMP (IFIM) score, but rather the smallest variance. That is to say, the
best sensor subset model will generally have a small variance over a wide range of different
learning and testing sets.

Alternatively, one could devise a method for combining each model’s best sensor subset
through voting, since each model is a best model over some set of learning and testing
configurations. In our opinion, the voting scheme for combining the best seen sensor models
should be preferred for models with low ICOMP (IFIM) scores, which have low variance
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in addition to their low score. Therefore, our voting scheme is defined as follows:

v =
ICOMP (IFIM)max − ICOMP (IFIM)m

σ2
m

where v is model m’s voting power, ICOMP (IFIM)max is the score for the worst sensor
subset in the collection of seen models, and σ2

m is model m’s ICOMP (IFIM) variance. We
then allow each model to cast a positive vote v for each sensor present in the model and
a negative vote −v for each sensor not present in the model. If we sum the votes for each
sensor, we are able to assign a rank to each sensor based on the currently observed best
model, by simply sorting all sensor final scores in descending order.

4 Methods

4.1 Campbell Creek Data

The new residential data set used in our research, called the Campbell Creek data set, is
a rich and unique data set. This data set was collected from 3 different homes located in
west Knox County, Tennessee. In addition, these Campbell Creek homes are leased and
operated by Tennessee Valley Authority (TVA) as part of a study testing energy efficient
materials and their savings [7]. The first house in this study, called House 1, is a standard
two-story residential home. However, the second, called House 2, and third house, called
House 3, were modified to decrease energy consumption. House 2 uses the same construction
materials as House 1, but was retrofitted with more energy efficient appliances, water heater,
and HVAC. House 3 was built using construction techniques and materials designed to help
reduce energy consumption. In addition, House 3 has two sets of photovoltaics – one set is
for generating electricity, and a second is for heating water in a solar-powered water heater.

The key characteristic about this dataset is that each house has approximately 140 dif-
ferent sensors which collect data every 15 minutes, and that each house is outfitted with
automated controls that manage the opening/closing of the refrigerator door, using the
oven, running clothes washer and dryer, as well as shower usage. The simulated occupancy
provides stable behavioral patterns across all three homes, making device usage within the
dataset consistent across test environments. In addition, the homes are automated based
on a DOE study of the typical energy usage patterns of American households. This means
the data set is free from behavioral factors, making it easier to compare results for different
houses. In addition, this data set provides a vast quantity of inputs that far surpasses the
amount of information used in the commercial and residential building studies.

4.2 Prediction Experimental Design

Our primary interest is determining which models perform the best at predicting electrical
consumption for the next hour. We facilitate this process by testing each technique under a
number of different configurations, and by a combination of K-Folds and Cross Validation.
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Each model is trained and tested using 10-Folds, which were created from sensor data col-
lected in each Campbell Creek House from January 1, 2010 until December 31, 2010. In
addition, if a model supports Cross Validation, such as a FFNN, its training set is split into
a training set and validation set. The split settings are the same for all models – 85% for
training and 15% for validation. Only SVR and Linear Regression do not make use of a
validation set during training. However, SVR uses a validation set when tuning the model’s
hyper-parameters.

The different model configurations include testing: Markov order 1 through 3, different
numbers of hidden neurons, different numbers of clusters, and different complete tree struc-
tures. For all HME models, we tested complete trees with depths 1 through 3 and branching
factors 2 through 4. Every model that incorporates a FFNN was tested with 10 to 15 hidden
neurons. Lastly, the Fuzzy Cluster approach was tested with 2 to 8 clusters. Testing these
different settings has allowed us to select the best model configuration for each technique
and facilitates comparisons between different techniques.

In addition, we tested all techniques on the Great Energy Predictor Shootout. These
experiments use two types of sensor inputs. The first, called S1, includes only environmental
sensors and time information, while the second, called S2, includes environmental sensors,
time information, and actual previous electrical consumption. The sensor inputs and naming
conventions follow those presented in [19, 22]. In this work, S1’s inputs are defined as follows:

S1 : ~x(t) = (T (t), S(t), s, sh, ch)

where T (t) is the current temperature, S(t) is the current solar flux, s is an indicator variable,
sh is the sin of the current hour, and ch is the cos of the current hour. The indicator variable
s, is used to denote whether the current day is a holiday or weekend. The variable is set to
1 for all holidays and weekends, and set to zero for all workdays. S2’s inputs are defined as
follows:

S2 : ~x(t) = (y(t− 1), y(t− 2), T (t), S(t), s, sh, ch)

where y(t− 1) and y(t− 2) represent previous known electrical consumption values.

4.3 Sensor Selection Experimental Design

Our primary interest is determining the most predictive sensor subset, rather than which
Wrapper method is fundamentally better at selecting best models. However, given that each
previously presented Wrapper method can produce completely different subsets of sensors,
we must ultimately compare the two methods against each other when selecting the best
model. We generate 200 unique models per Wrapper method for each house and across all
houses, where 100 unique models are created from data with missing values set to zero, and
the other 100 unique models are generated from data that had variables with missing values
removed completely. We select four best models from each wrapper method by selecting
two models from each respective 100 unique models. These two models are selected based
on two different criteria – the first model selected has the lowest mean ICOMP score, and
the second selected model has the ICOMP score with the least variance. We compare
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the four best Genetic Algorithm sensor subsets against the four best Stepwise Selection
sensor subsets, by testing each subset on 20 unique learning and test configurations sampled
from each respective dataset. The learning and test configurations were generated using
the Campbell Creek 2010 dataset, recorded from January 1st, 2010 until December 31st,
2010. 75% of the dataset is sampled without replacement for training and the remaining
25% is used as the testing set. We compare the eight selected best models found for each
Campbell Creek house or across all houses — meaning that all the individual house datasets
are combined into one dataset — and select the best performing model for each dataset.

Additionally, we apply our previously mentioned Sensor Ranking scheme to each set of
100 unique models, generated from each Wrapper method’s 200 unique models, and compare
the Sensor Rankings. We test to see which ranking is most general by selecting a fixed
number of top sensors from each set and compare them using the same testing methodology
for comparing the best selected models.

4.4 Performance Metrics

The primary measure for selecting the winners in the ASHRAE competition was the Coeffi-
cient of Variance (CV) measure [21], which determines how much the overall prediction error
varies with respect to the target’s mean. In other words, a high CV score indicates that a
model has a high error range. The CV measure is defined as follows:

CV =

1
N−1

√∑N
i=1(yi − ŷi)2

ȳ
× 100

where ŷi is the predicted energy consumption, yi is the actual energy consumption, and ȳ is
the average energy consumption.

A second metric, Mean Bias Error (MBE), was used to break ties within the competition.
This metric establishes how likely a particular model is to over-estimate or under-estimate
the actual energy consumption. A MBE closest to zero is preferred, because this means the
model does not favor a particular trend in its prediction. The MBE measure is defined as
follows:

MBE =
1

N−1
∑N

i=1(yi − ŷi)
ȳ

× 100

where ŷi, yi, and ȳ represent the same components presented in the CV measure.
Another metric that is commonly used in the literature to assess regression accuracy is

Mean Absolute Percentage of Error (MAPE) [19, 13]. The MAPE measure determines the
percentage of error per prediction, and is defined as follows:

MAPE =
1

N

N∑
i=1

|yi − ŷi|
yi

× 100

where ŷi and yi represent the same components defined in the CV and MBE measures.
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S1 S2
CV(%) MBE(%) MAPE(%)

Regression 14.12±0.00 7.69±0.00 13.41±0.00
FFNN 11.29±0.00 8.32±0.00 9.14±0.00
SVR 11.93±0.00 8.95±0.00 9.63±0.00

LSSVM 13.70±0.00 10.32±0.00 11.21±0.00
RVM 12.63±0.00 10.03±0.00 10.53±0.00

HME-REG 14.11±0.00 7.66±0.00 13.40±0.00
HME-LSSVM 13.61±0.00 10.21±0.00 11.13±0.00
HME-FFNN 11.49±0.00 2.91±0.00 9.73±0.00
FCM-REG 11.84±0.00 7.87±0.00 10.44±0.00
FCM-FFNN 11.51±0.00 8.71±0.00 9.45±0.00
FCM-LSSVM 13.47±0.00 10.36±0.00 11.04±0.00
HiddenME 11.19±0.00 8.30±0.00 9.04±0.00

CV(%) MBE(%) MAPE(%)
Regression 4.07±0.00 1.01±0.00 2.86±0.00
FFNN 2.93±0.00 0.64±0.00 1.77±0.00
SVR 3.97±0.00 1.41±0.00 2.31±0.00

LSSVM 6.35±0.00 1.53±0.00 4.50±0.00
RVM 2.95±0.00 0.69±0.00 1.80±0.00

HME-REG 4.05±0.00 0.99±0.00 2.85±0.00
HME-LSSVM 6.33±0.00 1.61±0.00 4.51±0.00
HME-FFNN 2.75±0.00 0.52±0.00 1.60±0.00
FCM-REG 3.50±0.00 1.01±0.00 2.23±0.00
FCM-FFNN 2.71±0.00 0.55±0.00 1.61±0.00
FCM-LSSVM 6.59±0.00 1.55±0.00 4.78±0.00
HiddenME 2.77±0.00 0.56±0.00 1.65±0.00

Table 1: Great Energy Prediction Shootout Results. Best results are shown in bold font.

In this work, we use CV as our primary metric. MBE is the first tie breaker, and MAPE
is the final tie breaker. We only take the tie breaker metrics into consideration when the
CV metric does not measure a statistical difference between two techniques. If both original
ASHRAE metrics are inconclusive, our decisions are based on the MAPE metric.

5 Prediction Results

Our experimental results are organized in the following order: ASHRAE Shootout 1, Camp-
bell Creek House 1, Campbell Creek House 2, and Campbell Creek House 3. Each section
presents the best performing models from the ten techniques. Following these result sec-
tions, we present a results summary, which presents the best general overall technique and
highlights the key results for each data set.

5.1 Great Energy Prediction Shootout

For comparison purposes, we ran our 10 implemented machine learning techniques on the
earlier Great Energy Prediction Shootout data set. In addition, we ran the previously
mentioned RVM and HiddenME methods on this data set, as well. The results for these
experiments are presented in Table 1. We are not able to make statistical claims about
the difference between techniques, because the original competition presented only a single
training and testing set. However, the S1 results indicate that a HiddenME and FFNN
are the best predictors for electrical consumption. The difference between to the two is too
small to conclude definitively which method is best. The FFNN finding is consistent with the
existing literature [21]. However, all methods except Linear Regression, HME with Linear
Regression, and all LSSVM based methods are competitive with the best three competition
winners: CV – 10.36%, 11.78%, 12.79%.

The S2 results in Table 1 suggest that HME with FFNN, FCM with FFNN, and Hid-
denME are better than the FFNN. However, the existing published results for the S2 inputs
range from 2.44% to 3.65% [19, 22]. From these results, we can conclude that Neural Net-
work type methods perform best on this data set. We can also conclude that the LSSVM
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House 1
Order 1 Order 2

CV(%) MBE(%) MAPE(%)
Regression 32.38±1.91 -0.06±1.08 30.52±1.41
FFNN 25.10±2.34 0.66±1.43 21.08±1.14
SVR 24.60±1.78 -2.46±0.95 17.05±0.94

LSSVM 23.39±1.26 0.01±0.84 18.21±0.89
HME-REG 32.35±1.82 -0.05±1.02 30.57±1.42

HME-LSSVM 23.68±1.41 -0.03±0.99 18.69±0.85
HME-FFNN 22.77±1.56 0.15±0.98 17.74±0.65
FCM-REG 31.91±1.67 -0.09±0.91 29.74±0.86
FCM-FFNN 22.65±1.42 0.81±0.95 18.18±0.75
FCM-LSSVM 24.03±1.20 0.01±0.87 19.52±0.92

CV(%) MBE(%) MAPE(%)
Regression 27.63±1.95 -0.03±1.09 26.18±1.51
FFNN 24.32±2.61 0.53±1.74 22.28±2.67
SVR 21.58±1.40 -1.41±0.89 16.41±0.95

LSSVM 20.05±0.81 0.06±0.62 16.11±0.85
HME-REG 27.60±2.13 -0.03±1.01 26.11±1.67

HME-LSSVM 20.23±0.85 0.07±0.56 16.40±0.80
HME-FFNN 20.15±1.65 0.46±0.93 17.07±1.19
FCM-REG 27.33±1.48 -0.14±0.72 25.62±0.80
FCM-FFNN 20.53±1.76 0.74±0.87 17.57±1.42
FCM-LSSVM 20.54±0.83 0.04±0.62 16.91±0.84

Order 3
CV(%) MBE(%) MAPE(%)

Regression 26.27±1.19 -0.11±1.45 24.33±0.96
FFNN 25.24±1.59 1.00±1.05 22.29±1.81
SVR 21.32±1.32 -1.50±0.80 15.48±0.87

LSSVM 20.36±1.46 0.11±0.63 15.73±1.11
HME-REG 26.14±1.10 -0.08±1.44 24.21±0.93

HME-LSSVM 20.58±1.19 0.03±0.94 16.03±0.98
HME-FFNN 20.39±1.67 0.70±0.92 17.09±0.81
FCM-REG 26.33±1.72 -0.20±1.10 23.91±1.22
FCM-FFNN 21.03±1.29 0.47±1.49 18.27±1.06
FCM-LSSVM 20.50±1.47 0.07±0.69 16.11±1.15

Table 2: Results for all techniques applied to Campbell Creek House 1. Best results are
shown in bold font.

based methods are the worst advanced technique, with Linear Regression and HME with
Linear Regression being only slightly better.

5.2 Campbell Creek House 1

Table 2 presents the results from applying all the techniques to House 1 with different
Markov orders. These results illustrate which techniques perform the best on House 1 and
the effects that different Markov orders have on these techniques. Almost all techniques
increase in performance as the order increases. The three methods that do not increase in
performance are FFNN, HME with FFNNs, and FCM with FFNNs. The FFNN results
are not statistically different across all orders. The other two techniques show performance
increases with order 2, but order 3 is not statistically different.

According to the CV metric, the best techniques are the order 2 SVR, order 2 LSSVM
based methods, order 2 HME with FFNNs, and order 2 FCM with FFNNs. While the
CV performance for the SVR model is not significantly different, its MBE error is statisti-
cally different from the other techniques, illustrating that it has potential to perform much
poorer than the other three techniques. In addition, the other three techniques do not have
significantly different MBE results. Even though the second tie-breaker metric does not
indicate a single best model, the third tie-breaker (MAPE) shows clearly that the LSSVM
based methods have the best MAPE measure and are statistically different from HME with
FFNNs and FCM with FFNNs. Therefore, LSSVM is the best model for predicting next
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House 2
Order 1 Order 2

CV(%) MBE(%) MAPE(%)
Regression 36.73±2.26 -0.13±1.00 31.01±3.48
FFNN 33.24±1.26 0.50±0.91 27.28±3.12
SVR 30.36±1.83 -2.95±1.03 20.44±2.81

LSSVM 27.88±1.24 -0.05±0.91 20.47±2.37
HME-REG 35.82±1.04 0.15±0.88 30.48±3.20

HME-LSSVM 27.98±1.39 0.01±0.99 20.84±2.89
HME-FFNN 29.30±1.28 0.09±1.01 22.71±2.92
FCM-REG 35.20±0.87 0.05±1.99 29.77±2.41
FCM-FFNN 28.14±1.21 0.40±0.97 21.96±2.74
FCM-LSSVM 28.05±1.17 -0.03±1.00 21.01±2.33

CV(%) MBE(%) MAPE(%)
Regression 34.15±1.66 0.05±1.61 28.36±3.72
FFNN 33.83±1.98 0.21±1.45 27.07±4.14
SVR 29.22±1.06 -3.00±1.12 19.42±3.27

LSSVM 27.43±1.90 0.20±1.03 20.17±2.26
HME-REG 34.15±1.74 0.14±1.38 28.29±3.86

HME-LSSVM 27.63±1.28 0.10±0.89 20.41±3.42
HME-FFNN 28.17±2.04 0.26±0.58 22.43±2.44
FCM-REG 33.49±1.52 0.01±1.59 27.46±2.77
FCM-FFNN 28.34±1.67 -0.20±1.27 22.30±3.28
FCM-LSSVM 27.19±1.90 0.16±1.14 20.17±2.34

Order 3
CV(%) MBE(%) MAPE(%)

Regression 33.15±1.33 -0.02±0.96 27.87±2.40
FFNN 34.23±1.63 2.01±2.45 29.62±2.16
SVR 28.59±2.05 -2.33±1.09 19.58±2.07

LSSVM 27.68±1.91 -0.02±1.71 20.23±2.56
HME-REG 33.20±1.32 -0.08±0.97 27.95±2.31

HME-LSSVM 27.19±1.87 0.37±0.84 20.67±2.30
HME-FFNN 29.64±2.21 -0.12±1.64 24.81±0.38
FCM-REG 32.70±1.66 -0.00±2.02 27.12±2.91
FCM-FFNN 28.94±1.46 0.45±1.27 22.76±2.03
FCM-LSSVM 27.24±1.93 -0.01±1.76 19.70±2.53

Table 3: Results for all techniques applied to Campbell Creek House 2. Best results are
show in bold font.

hour energy consumption for House 1, because HME with LSSVM and FCM with LSSVM
are not statistically different from a stand alone LSSVM.

5.3 Campbell Creek House 2

The results for House 2 (Table 3) show a different performance trend as the Markov Order
increases, compared to House 1. While most techniques illustrated an increase in perfor-
mance on House 1 as the Order increased, these techniques only present small improvements
on House 2. The improvements are only statistically significant for the baseline Linear
Regression technique and order 3 SVR.

Given the minimal performance gains from the increasing orders and the CV results for
House 2, the best techniques are the Order 1 LSSVM and Order 1 FCM with FFNNs. The
HME with LSSVM and FCM with LSSVM are not selected, because their performance is
not statistically different from from a stand alone LSSVM. In addition, the Order 1 models
are selected over the Order 2 and 3 models, because the three models are not statistically
different within an acceptable confidence, and higher order models are much more complex.
The higher order models are more complex because as the number of inputs increase, the
total number of parameters to estimate increases. A more complex model has less potential to
generalize to new examples, which makes it less desirable when simpler models provide equal
performance. In addition, the tie breaker measures MBE and MAPE are not statistically
different for all orders.
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House 3
Order 1 Order 2

CV(%) MBE(%) MAPE(%)
Regression 40.07±2.21 0.07±1.15 32.49±1.88
FFNN 37.15±1.57 0.35±2.03 28.92±2.55
SVR 33.71±1.72 -3.36±0.99 21.49±1.80

LSSVM 31.60±2.07 -0.15±1.10 22.25±1.33
HME-REG 39.17±2.17 0.33±1.38 31.72±2.07

HME-LSSVM 31.85±1.83 0.14±1.12 23.03±2.48
HME-FFNN 32.98±1.28 -0.12±0.84 23.99±1.63
FCM-REG 39.69±3.11 0.12±1.30 31.58±1.88
FCM-FFNN 33.03±1.67 0.93±1.52 25.28±2.14
FCM-LSSVM 31.75±2.01 -0.12±1.09 22.76±1.29

CV(%) MBE(%) MAPE(%)
Regression 39.26±4.19 0.11±1.86 31.34±2.58
FFNN 38.02±2.49 2.05±2.67 29.83±2.02
SVR 32.38±2.96 -3.12±1.73 20.72±1.38

LSSVM 30.66±2.53 -0.05±0.93 21.33±1.40
HME-REG 38.48±4.34 1.03±1.72 30.53±3.07

HME-LSSVM 30.61±2.23 -0.25±1.74 21.22±1.34
HME-FFNN 32.99±2.17 1.07±1.17 24.76±1.94
FCM-REG 38.74±2.67 0.08±1.90 30.56±1.76
FCM-FFNN 32.92±2.49 0.76±2.03 24.20±2.06
FCM-LSSVM 30.48±2.39 -0.04±0.99 21.24±1.36

Order 3
CV(%) MBE(%) MAPE(%)

Regression 38.53±3.47 0.15±1.22 30.49±2.15
FFNN 38.58±2.07 -0.08±2.46 30.57±2.51
SVR 31.88±2.01 -2.84±0.97 20.47±1.69

LSSVM 30.78±2.56 -0.21±1.04 21.36±1.50
HME-REG 38.22±3.58 1.20±1.49 29.52±2.47

HME-LSSVM 30.97±1.37 -0.21±0.97 21.37±1.61
HME-FFNN 33.34±1.83 1.09±1.24 25.15±2.13
FCM-REG 37.66±1.88 0.04±1.06 29.82±1.67
FCM-FFNN 33.66±2.09 1.17±1.30 25.51±1.72
FCM-LSSVM 30.57±2.55 -0.19±1.02 21.22±1.58

Table 4: Results for all techniques applied to Campbell Creek House 3. Best results are
shown in bold font.

5.4 Campbell Creek House 3

The results for House 3, shown in Table 4, present the same trend as the House 2 results. As
the order increases, most techniques have minimal or no performance gains. The only models
that present statistically significant improvements are Order 3 SVR and Order 2 LSSVM,
HME-LSSVM, and FCM-LSSVM. The Order 3 SVR shows improvement in the CV measure,
while the Order 2 LSSVM based methods presents improvement in the MAPE measure. All
other models are not statistically different within a reasonable confidence range across the
different orders.

According to the results in Table 4, order 3 SVR’s CV value is statistically different from
every model except order 2 and 3 LSSVM’s, CV values. In addition, order 1 LSSVM’ CV
value is not statistically different from all HME with FFNN models and FCM with FFNN
models, but the CV values for Order 2 and 3 are statistically better. Therefore, order 2
LSSVM and order 3 SVR are the best models based on the CV measure. The order 3
LSSVM model is excluded because it is not statistically different from the simpler order
2 model. Additionally, Order 2 HME with LSSVM and FCM with LSSVM are excluded,
because they are not statistically different from the standalone order 2 LSSVM model.

Note that the House 3 results indicate that SVR demonstrates a large MBE measure for
all Markov orders. This means that the SVR model is removed from consideration based
on the second tie-breaker measure. Therefore, the best technique for predicting next hour
energy consumption for House 3 is LSSVM.
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5.5 Prediction Results Summary

Our findings indicate that FFNN performs best on the original ASHRAE Shootout data
set, which is consistent with the literature. However, our results for S2 indicate that other
Neural Network methods might perform better. This is consistent with the recent work in
[22].

Our findings also indicate that traditional methods, such as FFNN, are not the best
overall method for predicting future residential electrical consumption. In fact, on House
3 the FFNN’s performance is extremely close to the baseline performance established by
Linear Regression. Traditional methods perform better on House 1 and 2, but not as well
as other techniques.

Despite traditional methods not performing as well on the residential data sets, our results
establish that FCM with FFNN, HME with FFNN, and LSSVM based methods work well
on all three houses. However, LSSVM is statistically the best technique at predicting future
residential electrical consumption over the next hour.

6 Sensor Selection Result

We have organized our sensor selection results according to the following order: Campbell
Creek House 1, Campbell Creek House 2, Campbell Creek House 3, Across All Houses,
Variable Ranking results, and comparisons against Ground Truth. The individual house
sections and the Across All Houses section contain results generated from the selected eight
best models. The Variable Ranking section contains results from applying our sensor ranking
method mentioned in Section 3.14. The Ground Truth Comparison section presents the
results from comparing the best sensors subsets with sizes one through four against the best
Markov Order 1 models and the best top 10 sensor sets selected using our ranking method.

6.1 Campbell Creek House 1

Figure 2 illustrates the experimental results of comparing the Genetic Algorithm and Step-
wise Selection Wrappers based on lowest ICOMP (IFIM) variance, for Campbell Creek
House 1. In addition, variables that have missing values were dropped, leaving each method
with 87 candidate sensors. Under this particular best model selection, Figure 2 shows that
the Genetic Algorithm Wrapper finds a more general subset of sensors for Markov Orders 1,
2, and 3. Interestingly, the model selected by the Genetic Algorithm uses more parameters
than the model selected with Stepwise Selection for all Markov Orders. The Genetic Algo-
rithm subset uses 57 sensors for Markov Order 1, 69 sensors for Markov Order 2, and 80
sensors for Markov Order 3, while the Stepwise Selection model uses 48 sensors, 58 sensors,
and 69 sensors, respectively. This means that the Genetic Algorithm finds sensors it can
incorporate without increasing the model complexity, while still producing a slightly better
goodness-of-fit as the Stepwise Selection Wrapper (Figure 2(e)).

If we change the best model selection policy for the Campbell Creek House 1 dataset with
the same 87 candidate sensors to selecting the model with the lowest mean ICOMP (IFIM),
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(c) Saturated Model’s Complexity
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(d) GA and Stepwise Model Complexity
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(e) Goodness-of-Fit

Figure 2: These graphs illustrate the experimental results from applying the models with
the lowest ICOMP (IFIM) variances on Campbell Creek House 1. Variables with missing
data were removed from the dataset for these results.
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then the Genetic Algorithm method shows slight improvement in overall ICOMP (IFIM)
criteria, and the Stepwise Selection method’s overall ICOMP (IFIM) improves greatly for
Orders 2 and 3. However, the goodness-of-fit (Figure 3(e)) for Genetic Algorithm methods
show improvements over the best variance model (Figure 2(e)), while the Stepwise Selection
Method shows degradation in performance. It may not be statistically different with a
95% confidence, but the Genetic Algorithm method appears to fit the data better in higher
orders. While the overall ICOMP (IFIM) criteria mostly improves, note a slight increase
in the overall error range, meaning that these models are possibly more variable than best
variance models. This means that when selecting the appropriate sensor subset one needs
to consider the possible variance in performance in addition to overall performance. The
Stepwise Selection method increases the number of sensors it selects for Markov Orders 1
and 2 in this set of experiments, using 50 sensors, 62 sensors, and 68 sensors. Additionally,
the Genetic Algorithm method increases the number of sensors included in Markov Order 1
and 2. It uses 58 sensors, 73 sensors, and 78 sensors for these results.

Using the data from the same house, except that missing values are now set to zero and
the number of candidate sensors is now 95, Figure 4 compares results for the Genetic Algo-
rithm and Stepwise Selection methods based on the model with the lowest ICOMP (IFIM)
variance. Under these new conditions, the Genetic Algorithm’s ICOMP (IFIM) values are
significantly worse than the two models selected when dropping variables with missing values
(Figure 2(b) and Figure 3(b)). Similarly, the Stepwise Selection method’s ICOMP (IFIM)
values are significantly worse for Markov Orders 1 and 2, but its ICOMP (IFIM) value
for Markov Order 3 is substantially better. It is not quite clear why this Stepwise Selection
model performs better than the previous Stepwise Selection models for only Order 3. It
could be because the overall fit is better when compared to the previous Stepwise Selection
models, and the complexity is higher for order 1 and 2 causing the model to incur an addi-
tional penalty for the improved fit. The Genetic Algorithm’s fit is significantly worse than
the previous lowest ICOMP (IFIM) mean value model (Figure 3(b)), yet there is only a
slight degradation when compared to the previous lowest variance ICOMP (IFIM) (Figure
2(b)). The Genetic Algorithm model used 57 sensors, 73 sensors, and 77 sensors and the
Stepwise Selection model used 54 sensors, 66 sensors, and 73 sensors.

If we change the best model selection policy for the Campbell Creek House 1 dataset with
the same 95 candidate sensors to selecting the model with the lowest mean ICOMP (IFIM),
then the Genetic Algorithm model’s ICOMP (IFIM) values (Figure 5(b)) are much closer to
Genetic Algorithm results seen in Figures 2(b) and 3(b), while the Stepwise Selection model’s
ICOMP (IFIM) values are the best results for this model selection on Campbell Creek
House 1. The fit for the Genetic Algorithm model, Figure 5(e), is slightly better than the
models seen in Figure 2(e) and Figure 4(e), but is worse than the Genetic Algorithm model
in Figure 3(e). The Stepwise selection model’s fit is mostly identical to the fit seen in Figure
2(e). This means the Stepwise Selection model is using sensors that were originally removed
from the dataset, and these sensors provide improvement by reducing model complexity.
This Stepwise Selection model increased the number of sensors used for Markov Order 1 and
2, compared to the lowest ICOMP (IFIM) variance Stepwise Selection model. It uses 59
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(a) Saturated Model’s ICOMP
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(b) GA and Stepwise Models’ ICOMP
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(c) Saturated Model’s Complexity
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(d) GA and Stepwise Model Complexity
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(e) Goodness-of-Fit

Figure 3: These graphs illustrate the experimental results from applying the models with
the lowest mean ICOMP (IFIM) on Campbell Creek House 1. Variables with missing data
were removed from the dataset for these results.
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(a) Saturated Model’s ICOMP
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(b) GA and Stepwise Models’ ICOMP
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(c) Saturated Model’s Complexity
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(d) GA and Stepwise’s Model Complexity
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(e) Goodness-of-Fit

Figure 4: These graphs illustrate the experimental results from applying the models with
the lowest ICOMP (IFIM) variance on Campbell Creek House 1. All missing values in the
data were set to zero for these results.
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sensors, 71 sensors, and 73 sensors, while the Genetic Algorithm model uses 58 sensors, 72
sensors, and 89 sensors.

From Figures 2, 3, 4, and 5, it is clear that the best Genetic Algorithm Model for Campbell
Creek House 1 is the model presented in Figure 3, and the best Stepwise Selection Model
is presented in Figure 5. The dropped variables had a very large impact on the Stepwise
Selection method, making it very difficult to find good models under the ICOMP (IFIM)
criteria. However, the Genetic Algorithm method in both cases was able to find better models
than the Stepwise Selection method, but its best model was found when the variables with
missing values were dropped. Ultimately, the Genetic Algorithm method is finding better
models than Stepwise Selection on Campbell Creek House 1.

6.2 Campbell Creek House 2

Figure 6 compares the results of the Genetic Algorithm and Stepwise Selection Wrappers
when selecting the best model, based on lowest ICOMP (IFIM) variance, for Campbell
Creek House 2. In addition, variables that have missing values were dropped, leaving each
method with 84 candidate sensors. Note that under the lowest variance model selection, the
Genetic Algorithm finds a better model under the ICOMP (IFIM) metric on this dataset,
too. The Genetic Algorithm model uses considerably more sensors for all Markov Orders —
57 sensors, 67 sensors, and 73 sensors, while the Stepwise Selection model uses 46 sensors,
54 sensors, and 53 sensors. The differences in the numbers of sensors explains why the
Genetic Algorithm model has a slightly better goodness-of-fit than the Stepwise Selection
model (Figure 7(e)), because additional sensors included in the model can only increase
goodness-of-fit; this is demonstrated with the fully saturated model (Figure 7(e)) where a
fully saturated model is defined as one that uses all available sensors.

Changing the best model selection strategy to selecting the model with the lowest mean
ICOMP (IFIM) increases overall performance on the Campbell Creek House 2 dataset with
84 candidate sensors for the model generated using Stepwise Model Selection (Figure 7(b)).
The Genetic Algorithm model presents very minor improvements for Markov Order 2 and 3.
This stems from the Genetic Algorithm’s goodness-of-fit (Figure 7(e)) and model complexity
(Figure 7(d)) not significantly changing because the number of sensors included in the model
remains roughly the same, as the best variance model. The Genetic Algorithm model, in
Figure 7, uses 60 sensors, 69 sensors, and 73 sensors. Conversely, the Stepwise Selection
model’s goodness-of-fit appears to increase very slightly. The goodness-of-fit’s means are
shifted slightly lower than the original means (Figure 7(e) and Figure 6(e)). The increase
stems from the Stepwise Selection method adding additional sensors to the model, using 51
sensors, 62 sensors, and 60 sensors.

Using the data from the same house, except missing values are now set to zero and the
number of candidate sensors is now 103, Figure 8 compares results for the Genetic Algo-
rithm and Stepwise Selection methods based on the model with the lowest ICOMP (IFIM)
variance. The Genetic Algorithm’s overall ICOMP (IFIM) scores show decreases in per-
formance, when compared to results shown in Figure 7(b) and Figure 6(b). The overall
ICOMP (IFIM) scores for Stepwise Selection are slightly better than the results seen in

38



One Two Three

2000

4000

6000

8000

10000

12000

14000

16000

Order

IC
O

M
P

(I
F

IM
)

Stepwise−Subset Model, GA−Subset Model, and Saturated Model’s
ICOMP(IFIM) Measures on House 1

 

 
Stepwise−Subset Model
GA−Subset Model
Saturated Model

(a) Saturated Model’s ICOMP
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(b) GA and Stepwise Models’ ICOMP
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(c) Saturated Model’s Complexity
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(d) GA and Stepwise’s Model Complexity
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(e) Goodness-of-Fit

Figure 5: These graphs illustrate the experimental results from applying the models with
the lowest mean ICOMP (IFIM) on Campbell Creek House 1. All missing values in the
data were set to zero for these results.
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(a) Saturated Model’s ICOMP
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(b) GA and Stepwise Models’ ICOMP
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(c) Saturated Model’s Complexity
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(d) GA and Stepwise’s Model Complexity
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(e) Goodness-of-Fit

Figure 6: These graphs illustrate the experimental results from applying the models with
the lowest ICOMP (IFIM) variances on Campbell Creek House 2. Variables with missing
data were removed from the dataset for these results.
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(a) Saturated Model’s ICOMP
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(b) GA and Stepwise Models’ ICOMP
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(c) Saturated Model’s Complexity
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(d) GA and Stepwise’s Model Complexity
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(e) Goodness-of-Fit

Figure 7: These graphs illustrate the experimental results from applying the models with
the lowest mean ICOMP (IFIM) on Campbell Creek House 2. Variables with missing data
were removed from the dataset for these results.
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Figure 6(b), but are considerably worse than the results shown in Figure 7(b). Additionally,
the goodness of fit is slightly worse for both the Genetic Algorithm and Stepwise Selection
compared to the previous models. The Genetic Algorithm uses 67 sensors for Markov Order
1, 85 sensors for Markov Order 2, and 91 sensors for Markov Order 3, while the Stepwise
Selection method uses 63 sensors, 62 sensors, and 67 sensors.

Changing the best model selection strategy to selecting the model with the lowest mean
ICOMP (IFIM) increases overall performance on the Campbell Creek House 2 dataset with
103 candidate sensors. The models generated using Stepwise Model Selection for Markov
Orders 1 and 3 (Figure 9(b)) perform better than all other Stepwise Models on Campbell
Creek House 2. However, its performance for Order 2 remains essentially the same as all other
Stepwise Models. Additionally, the Genetic Algorithm method finds the best performing
model in terms of ICOMP (IFIM), compared to the other models presented in Figures
7(b), 6(b), and 8(b). The Genetic Algorithm method uses 69 sensors, 78 sensors, and 93
sensors. The best performing Stepwise Selection method uses 61 sensors, 62 sensors, and 68
sensors.

From Figures 6, 7, 8, and 9, it is clear that the best Genetic Algorithm Model for
Campbell Creek House 2 is the model presented in Figure 9, and the best Stepwise Selection
Model is presented in Figure 9. Similar to House 1, the dropped variables had a very large
impact on the Stepwise Selection method, making it very difficult to find good models under
the ICOMP (IFIM) criteria. However, the Genetic Algorithm method in both cases was
able to find better models than the Stepwise Selection method, but its best model was found
when the variables with missing values were dropped. Ultimately, the Genetic Algorithm
method is finding better models than Stepwise Selection on Campbell Creek House 2.

6.3 Campbell Creek House 3

Figure 10 compares the results of the Genetic Algorithm and Stepwise Selection Wrappers
when selecting the best model based on lowest ICOMP (IFIM) variance on Campbell
Creek House 3. In addition, variables that have missing values were dropped, leaving each
method with 77 candidate sensors. Recall that House 3 is the house for which a linear
regression technique is not able to obtain a near-perfect mapping from xt to yt, while these
mappings were successfully found for Houses 1 and 2. With this in mind, note that the
ICOMP (IFIM) scores are considerably higher (and thus worse) compared to the ones seen
for Houses 1 and 2. Additionally, for all Markov Orders, the model selected with the Genetic
Algorithm is better in terms of ICOMP (IFIM), and model complexity (Figure 10(b) and
Figure 10(d)), but the goodness-of-fit is essentially the same as the Stepwise Selection model
(Figure 10(e)). The model selected by the Genetic Algorithm uses 41 sensors, 48 sensors,
and 56 sensors, while the model selected by Stepwise Selection uses 49 sensors, 52 sensors,
and 53 sensors.

Changing the best model selection strategy to one of selecting the model with the lowest
mean ICOMP (IFIM) value on the House 3 dataset, with 77 candidate sensors, shows
improvement for Markov Order 3 in term of ICOMP (IFIM) values for both methods, but
little to no increase for goodness-of-fit. Figures 10 and 11 strongly suggest that a different
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(a) Saturated Model’s ICOMP
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(b) GA and Stepwise Models’ ICOMP
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(c) Saturated Model’s Complexity
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(d) GA and Stepwise Models’ Complexity
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(e) Goodness-of-Fit

Figure 8: These graphs illustrate the experimental results from applying the models with
the lowest ICOMP (IFIM) variance on Campbell Creek House 2. All missing values in the
data were set to zero for these results.
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(a) Saturated Model’s ICOMP
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(b) GA and Stepwise Models’ ICOMP
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(c) Saturated Model’s Complexity
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(d) GA and Stepwise Models’ Complexity
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(e) Goodness-of-Fit

Figure 9: These graphs illustrate the experimental results from applying the models with
the lowest mean ICOMP (IFIM) on Campbell Creek House 2. All missing values in the
data were set to zero for these results.
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(a) Saturated Model’s ICOMP
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(b) GA and Stepwise Models’ ICOMP
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(c) Saturated Model’s Complexity
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(d) GA and Stepwise Models’ Complexity
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(e) Goodness-of-Fit

Figure 10: These graphs illustrate the experimental results from applying the models with
the lowest ICOMP (IFIM) variances on Campbell Creek House 3. Variables with missing
data were removed from the dataset for these results.
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approach is required for modeling House 3, because the overall model complexity for the
fully saturated model is extremely low (Figure 10(c)) when compared to the overall model
complexity for the fully saturated model on Houses 1 and 2 (Figure 2(c) and Figure 8(c)).
This argues that there are complex non-linear relationships between House 3’s sensor data
and the actual energy consumption; we currently believe this difference stems from the fact
that House 3 has the capability to produce a portion of its own electricity using solar panels.
However, one can clearly see that the Stepwise Selection and Genetic Algorithm methods
still minimize the selected model complexity, even though a Linear Regression Model may
not be the most appropriate Learning method.

Using the data from the same house, except missing values are now set to zero and the
number of candidate sensors is 128, Figure 12 compares results for the Genetic Algorithm
and Stepwise Selection methods based on the model with the lowest ICOMP (IFIM) vari-
ance. Comparing the ICOMP (IFIM) values from the Genetic Algorithm and Stepwise
Selection models (Figure 12(b)) against previous ICOMP (IFIM) values (Figure 11(b) and
Figure 10(b)), one will see that there is considerable degradation in the Genetic Algorithm’s
performance, while the Stepwise Selection is showing increases in performance for all orders.
However, the model generated by Stepwise Selection for Markov Order 3 has a fairly large
standard deviation, implying the model is highly variable and unstable. In addition, one
should notice that both methods are more than likely over-fitting or under-fitting the train-
ing examples as the Markov Order increases, which is clearly visible from the decreasing
performance in the goodness-of-fit (Figure 12(e)). The Genetic Algorithm uses 63 sensors,
93 sensors, and 109 sensors, while Stepwise Selection uses 71 sensors, 91 sensors, and 75
sensors.

Changing the best model selection strategy to selecting the model with the lowest mean
ICOMP (IFIM) increases overall performance on the Campbell Creek House 3 dataset with
128 candidate sensors for all models generated by both methods (Figure 13(b)). However,
Stepwise Selection has a slightly better goodness-of-fit for orders 2 and 3 compared to the
Genetic Algorithm (Figure 13(e)), but Stepwise Selection’s model complexity is much higher
than the model complexity for the Genetic Algorithm for Order 2. Yet, both methods have
equivalent complexity for Markov Order 3, making the Stepwise Selection model the best
model compared to the previous models in Figure 12(e), Figure 10(e), and Figure 11(e). In
addition, the Stepwise Selection method uses 76 sensors, 86 sensors, and 85 sensors, while the
Genetic Algorithm method uses 77 sensors, 88 sensors, and 107 sensors. This implies that
the model generated from using the Genetic Algorithm in Figure 12 is over-fitting for higher
Markov Orders, and the model generated from Stepwise Selection, also shown in Figure 12,
is under-fitting for Markov Order 3 and over-fitting for Markov Order 2.

From Figures 10, 11, 12, and 13 it is clear that the best Genetic Algorithm Model and
Stepwise Selection Model for House 3 are the models presented in Figure 13. Additionally,
we observe, yet again, that dropping variables with missing values had a significant impact
on the Stepwise Selection method, and setting missing values to zero showed impact on the
Genetic Algorithm method. While the Genetic Algorithm is for the most part producing
better models on this data set, Stepwise Selection produced the best model, Markov Order
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(a) Saturated Model’s ICOMP
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(b) GA and Stepwise Models’ ICOMP
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(c) Saturated Model’s Complexity
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(d) GA and Stepwise Models’ Complexity
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(e) Goodness-of-Fit

Figure 11: These graphs illustrate the experimental results from applying the models with
the lowest mean ICOMP (IFIM) on Campbell Creek House 3. Variables with missing data
were removed from the dataset for these results.
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(a) Saturated Model’s ICOMP
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(b) GA and Stepwise Models’ ICOMP
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(c) Saturated Model’s Complexity
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(d) GA and Stepwise Models’ Complexity
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(e) Goodness-of-Fit

Figure 12: These graphs illustrate the experimental results from applying the models with
the lowest ICOMP (IFIM) variance on Campbell Creek House 3. All missing values in the
data were set to zero for these results.
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(a) Saturated Model’s ICOMP
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(b) GA and Stepwise Models’ ICOMP
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(c) Saturated Model’s Complexity
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(d) GA and Stepwise Models’ Complexity
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(e) Goodness-of-Fit

Figure 13: These graphs illustrate the experimental results from applying the models with
the lowest mean ICOMP (IFIM) on Campbell Creek House 3. All missing values in the
data were set to zero for these results.
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3 model in Figure 13, making it the better choice for this particular dataset.

6.4 Across All Houses

Figure 14 compares the results of the Genetic Algorithm and Stepwise Selection Wrappers
when selecting the best model based on lowest ICOMP (IFIM) variance, across all Camp-
bell Creek Houses. In addition, variables that have missing values were dropped, leaving each
method with 75 candidate sensors. According to the ICOMP (IFIM) values in Figure 14(a),
the Genetic Algorithm is generating better models than Stepwise Selection for all Markov
Orders. The goodness-of-fit is equivalent for all models generated with each method (Figure
14(e)), implying that the Genetic Algorithm is consistently minimizing model complexity
and maintaining goodness-of-fit. The Genetic Algorithm is using 50 sensors, 61 sensors, and
69 sensors, while Stepwise Selection is using 56 sensors, 63 sensors, and 62 sensors.

Changing the best model selection strategy to one of selecting the model with the lowest
mean ICOMP (IFIM) value across all houses, with 75 candidate sensors, one will see that
the Genetic Algorithm’s ICOMP (IFIM) values in Figure 15(b) indicate no changes in
performance quality. However, comparing the Stepwise Selection results in the same Figure
to the results in Figure 14(b), one sees a slight increase in performance for Markov Order 2,
and the results for Markov Order 1 and 3 are about the same. In addition, the goodness-of-
fits for these models (Figure 15(e)) are identical to the goodness-of-fits observed in Figure
14(e). The Genetic Algorithm is using 62 sensors, 62 sensors, and 68 sensors, while Stepwise
Selection is using 55 sensors, 61 sensors, and 67 sensors.

Using the same data, except missing values are now set to zero and the number of
candidate sensors is 141, Figure 16 compares results for the Genetic Algorithm and Stepwise
Selection methods based on the model with the lowest ICOMP (IFIM) variance. Figure
16(b) shows that the Genetic Algorithm and Stepwise Selection methods’ ICOMP (IFIM)
values have a very large increase in performance compared to previous results in Figure
14(b) and Figure 15(b). The increase performance mainly stems from both methods showing
decreases in model complexity (Figure 16(d)), but there are slight improvements in goodness-
of-fit (Figure 16(e)) as well. The Genetic Algorithm uses 93 sensors, 123 sensors, and 118
sensors, while Stepwise Selection uses 98 sensors, 107 sensors, and 109 sensors.

Changing the best model selection strategy to selecting the model with the lowest mean
ICOMP (IFIM) increases overall performance across all houses with 141 candidate sensors
for all models generated by both methods (Figure 17(b)). Comparing the model complexity
for both models in Figure 17(d) with all previous models on this data set, one will see
that these models obtain the lowest complexity for Markov Orders 2 and 3, and the same
model complexity as the models seen in Figure 16(d), for Markov Order 1. Additionally, the
goodness-of-fit (Figure 17(e)) for these models is essentially the same as the goodness-of-fit
presented for the models seen in Figure 16(e). This best performing Genetic Algorithm
algorithm model uses 95 sensors, 123 sensors, and 124 sensors, while the best performing
Stepwise Selection uses 85 sensors, 104 sensors, and 110 sensors.

From Figures 14, 15, 16, and 17 it is clear that the best Genetic Algorithm Model and
Stepwise Selection Model across all houses are presented in Figure 17. In the previously
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(a) Saturated Model’s ICOMP
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(b) GA and Stepwise Models’ ICOMP
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(c) Saturated Model’s Complexity
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(d) GA and Stepwise Models’ Complexity
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(e) Goodness-of-Fit

Figure 14: These graphs illustrate the experimental results from applying the models with
the lowest ICOMP (IFIM) variance across all houses. Variables with missing data were
removed from the dataset for these results.
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(a) Saturated Model’s ICOMP
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(b) GA and Stepwise Model’s ICOMP
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(c) Saturated Model’s Complexity
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(d) GA and Stepwise Model’s Complexity
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(e) Goodness-of-Fit

Figure 15: These graphs illustrate the experimental results from applying the models with the
lowest mean ICOMP (IFIM) across all houses. Variables with missing data were removed
from the dataset for these results.
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(a) Saturated Model’s ICOMP
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(b) GA and Stepwise Models’ ICOMP
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(c) Saturated Model’s Complexity
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(d) GA and Stepwise Models’ Complexity
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(e) Goodness-of-Fit

Figure 16: These graphs illustrate the experimental results from applying the models with
the lowest ICOMP (IFIM) variance across all houses. All missing values in the data were
set to zero for these results.
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(a) Saturated Model’s ICOMP
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(b) GA and Stepwise Models’ ICOMP
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(c) Saturated Model’s Complexity
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(d) GA and Stepwise Models’ Complexity
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(e) Goodness-of-Fit

Figure 17: These graphs illustrate the experimental results from applying the models with
the lowest mean ICOMP (IFIM) across all houses. All missing values in the data were set
to zero for these results.
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presented results, Stepwise Selection was generally the only method significantly affected by
dropping variables with missing values; however, the Genetic Algorithm method was greatly
affected as well on this data set. The key reason for this change is due to the fact that not
all the houses have the same sensors, and dropping sensors with missing values greatly limits
the number available sensors, which greatly restricts the Genetic Algorithm’s search space.

6.5 Variable Ranking

Figures 18, 19, 20, and 21 present the results from applying our sensor ranking technique to
determine the best model, when variables with missing values were removed. Recall that the
sensor ranking method combines all best models found for each method, and then selects the
top k sensors from the list to use in the final model. For all of these results, we heuristically
set k equal to the number of sensors whose total vote is greater than zero. Additionally,
Tables 5 and 6 show the top ten sensors for both methods on Markov Order 1.

Comparing the results from Figure 18 with the previous results for Campbell Creek House
1 (Figures 2, 3, 4, and 5), one can see that the Rank Model created from combining all the
models generated by the Genetic Algorithm is better than the previously seen best models
on House 1 (Figure 5). However, the Rank model constructed from the Stepwise Selection
models in Figure 18 is worse than the previously seen best Stepwise Selection model on House
1 (Figure 5), but is better than the model seen in Figure 2 for all Markov Orders, and is better
than the model in Figure 4 for Markov Order 1 and 2. Combining Stepwise models, where
variables with missing values were removed, gives some improvement in performance, but
most likely the removed variables are contributing to the poor performance. This Stepwise
Rank Model is created using models that have previously demonstrated poor performance,
because the variables with missing data were removed. This means one cannot expect a
large performance increase when the base models are poor.

On Campbell Creek House 2, the Rank Model created from combining the Genetic Al-
gorithm subset models compared to all previously presented models (Figures 6, 7, 8, and
9) is the worst model (Figure 19). The model’s complexity is fairly close to the fully Sat-
urated Model (Figure 23(c)) for all Markov Orders, making it much more undesirable than
the previously presented models. The Rank Model constructed from the Stepwise Selection
models performs much better than the Rank Genetic Algorithm model, but is not better
than the best model seen in the previously presented House 2 results. The Stepwise Rank
Model’s Markov Order 3 (Figure 19(a)) has better performance than the Stepwise Selection
model for the Markov Order 3 seen in Figure 7(a), but worse performance on Markov Order
1 and 2. Additionally, comparing the same rank model to the Stepwise Selection results in
Figure 6(a), we observe that Rank Model’s Markov Order 1 performance is worse, but the
performance is better for the other Markov Orders. Comparing the Stepwise Rank Model’s
result against the Stepwise selected models without removed variables, we see that previous
results in Figure 9 are better for all Markov Orders, and the results in Figure 8 are better
for Markov Order 1 and 2.

Comparing the Rank Model created from the Genetic Algorithm for House 3 (Figure 20),
where variables with missing values were dropped, against all previously presented results
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(a) Saturated Model’s ICOMP
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(b) GA and Stepwise Models’ ICOMP
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(c) Saturated Model’s Complexity
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(d) GA and Stepwise Models’ Complexity
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(e) Goodness-of-Fit

Figure 18: Experimental results for Campbell Creek House 1’s Rank Models with dropped
variables that have missing data.
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(a) Saturated and GA Models’ ICOMP
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(b) Stepwise Model’s ICOMP
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(c) Saturated and GA Models’ Complexity
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(d) Stepwise Model Complexity
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(e) Goodness-of-Fit

Figure 19: Experimental results for Campbell Creek House 2’s Rank Models with dropped
variables that have missing data.
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House 1 House 2 House 3 Across All
HW Tot HW Tot HP1 in Tot HP1 in Tot

bathup lts Tot bathup lts Tot HP1 out Tot HP1 out Tot
LVL1 lts Tot LVL1 lts Tot HP1 back Tot HP1 in fan Tot
Kit tmp Avg wash Tot HP1 comp Tot HP2 in Tot

BedB tmp Avg LVL1 plg Tot FanTech Tot HP2 out Tot
Nrake1 tmp Avg RoofN tmp Avg solar HW pump Tot FanTech Tot
Nrake2 tmp Avg AtticN tmp Avg bathup lts Tot solar HW pump Tot
Srake1 tmp Avg WallNcav tmp Avg LVL1 lts Tot HW Tot
Attic tmp Avg BedM tmp Avg bed Tot bathup lts Tot

WashHot flow Tot Bed2 tmp Avg dryer Tot LVL1 lts Tot

Table 5: Top 10 Sensors from the Voted Markov Order 1 models per house. The Markov
Order 1 models were constructed by combining all the best Stepwise Selection subsets, using
the voting process discussed in Section 3.14. Additionally, the best Stepwise Selection subsets
were computed using datasets where variables with missing values were removed.

for House 3 (Figures 10, 11, 12, and 13), one can see that the rank model for Markov
Order 2 and Markov Order 3 has better performance than the Genetic Algorithm results in
Figure 11, and Markov Order 1 performance is the same. In addition, the Genetic Algorithm
results in Figure 10 are worse than the Genetic Rank Model for Markov Orders 2 and 3,
but the same for Markov Order 1. Comparing the Genetic Rank Model results against
the Genetic Algorithm results in Figure 13, one will see that the Genetic Rank Model is
worse for all Markov Orders. Yet, the Genetic Rank Model produces better results than
the Genetic Algorithm results presented in Figure 12. The Stepwise Rank Model results are
generally similar to the previous Stepwise Selection results on House 3, and only present
better performance when compared against the poorer performing Stepwise models.

Lastly, the rank models created from the Genetic Algorithm and Stepwise Selection
models across all houses perform the same as the results presented in Figure 10 and Figure
11. This shows that the ranking process is not degrading performance across all the houses,
but it is not improving performance like it has for certain models on House 1 and House 2.

Figures 22, 23, 24, and 25 present the results from applying our sensor ranking technique
to determine the best model, when missing values are set to zero. In addition, Tables 7 and
8 show the top ten sensors for both methods on Markov Order 1. All the Stepwise rank
models shown in these figures are extremely similar to the previous Stepwise rank models
(Figures 18, 19, 20, and 21) and do not provide performance increase, but do not decrease
performance drastically either. In addition, the Genetic Rank Model on House 2 performs
poorly in terms of model complexity, just like the Genetic Rank Model seen in Figure 19.

The key observation is that the Genetic Rank models in Figures 22, 24, and 25 present
the best model for House 1, House 3, and across all houses. On House 1, the Markov Order
3 model provides the best goodness-of-fit compared to all previous results and has better
model complexity than all previous models. The Genetic Rank model across all houses has
the best goodness-of-fit and best complexity compared to all previous models as well. Lastly,
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(a) Saturated Model’s ICOMP
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(b) GA and Stepwise Models’ ICOMP
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(c) Saturated Model’s Complexity
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(d) GA and Stepwise Models’ Complexity
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(e) Goodness-of-Fit

Figure 20: Experimental results for Campbell Creek House 3’s Rank Models with dropped
variables that having missing data.
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(a) Saturated Model’s ICOMP
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(b) GA and Stepwise Models’ ICOMP
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(c) Saturated Model’s Complexity
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(d) GA and Stepwise Models’ Complexity
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(e) Goodness-of-Fit

Figure 21: Experimental results for Rank Models across all houses with dropped variables
that have missing data.
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House 1 House 2 House 3 Across All
gar ext lts Tot LVL1 lts Tot bathup lts Tot HP1 out Tot
LVL1 lts Tot gar ext plg Tot LVL1 lts Tot FanTech Tot
bath plg Tot CantFlr RH Avg dryer Tot LVL1 lts Tot

gar ext plg Tot AtticN HFT Avg wash Tot bed Tot
bed Tot HP1ret tmp Avg micro Tot dryer Tot
dish Tot Attic RH Avg range Tot wash Tot

RoofS HFT Avg FreshAir Flow Tot FanTexh RH Avg LVL1 plg Tot
fridge Tot gar ext lts Tot HW Tot gar ext plg Tot

CondenHP1 Tot CondenHP1 Tot WallScav RH Avg micro Tot
HP2sup RH Avg WallScav RH Avg FanTech ToT dish Tot

Table 6: Top 10 Sensors from the Voted Markov Order 1 models per house. The Markov
Order 1 models were constructed by combining all the best Genetic Algorithm subsets, using
the voting process introduced in Section 3.14. Additionally, the best Genetic Algorithm
subsets were computed using datasets where variables with missing values were removed.

the Genetic Rank Model improves model complexity greatly on House 3, making it the best
performing model in terms of ICOMP (IFIM) for all Markov Orders.

6.6 Ground Truth Comparison

An advantage of our model selection approach is that it can allow a practical search over
a large solution space to find good solutions that work well in practice. Comparing it to
the “Ground Truth” solution is computationally infeasible. Nevertheless, it is informative
to calculate the exact solution for small problems, in order to provide comparative results
to our approach. We, therefore, calculated the best sensors subsets, “Restricted Ground
Truth,” with cardinality up to four. We refer to these sensor subsets as “Restrict Ground”
because they are globally optimal solutions to a smaller problem. Tables 9 and 10 show the
“Restricted Ground Truth” subsets for datasets with removed missing data variables, while
Tables 11 and 12 show the “Restricted Ground Truth” subsets for datasets with missing
data values set to zero. These subsets were computed in a brute force fashion by selecting
the best subset from all possible subsets that minimized the linear regression’s residual SSE
(Sum Squared Error). These tables compare the “Restricted Ground Truth’s” Coefficient of
Variance (CV) and ICOMP scores against the best found Genetic Algorithm Models with
Markov Order 1 and the best Top 10 Sensor lists on each respective dataset. This means
that we are only comparing “Restricted Ground Truth” results for a dataset against models
that were found using the same dataset. The “Top 10 Sensors” results in Tables 9 and 10
were generated using the sensor listings found in Table 6 for House 1, 3, and across all, while
the results for House 2 were generated using the sensor listings found in Table 5. The “Top
10 Sensors” results in Tables 11 and 12 were generated using the sensor listings found in
Table 8.

Analyzing Tables 9 and 10 shows that there is a large difference in performance between
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House 1 House 2 House 3 Across All
bathup lts Tot bathup lts Tot HP1 in Tot bathup lts Tot

bed Tot LVL1 lts Tot HP1 out Tot LVL1 lts Tot
dish Tot wash Tot HP1 back Tot wash Tot

range Tot LVL1 plg Tot HP1 comp Tot micro Tot
WallScav tmp Avg RoofN tmp Avg bathup lts Tot dish Tot

BedM tmp Avg AtticN tmp Avg LVL1 lts Tot CantFlr tmp Avg
Bed3 tmp Avg WallNcav tmp Avg bed Tot BedM tmp Avg
BedB tmp Avg BedM tmp Avg wash Tot Bed3 tmp Avg

Nrake1 tmp Avg Bed2 tmp Avg micro Tot Bed2 tmp Avg
Nrake2 tmp Avg Mbath tmp Avg RoofS tmp Avg BedB tmp Avg

Table 7: Top 10 Sensors from the Voted Markov Order 1 models per house. The Markov
Order 1 models were constructed by combining all the best Stepwise Selection subsets, using
the voting process discussed in Section 3.14. Additionally, the best Stepwise Selection subsets
were computed with missing data values set to zero.

House 1 House 2 House 3 Across All
HWcold tmp Avg wash Tot wash Tot HWhot tmp Avg

dish Tot HWcold tmp Avg HP1 out Tot washHot tmp Avg
LVL1 lts Tot gar ext lts Tot WashHot flow Tot HP1ret RH Avg

HWhot tmp Avg gar ext plg Tot SlrW1 Avg Nrake5 tmp Avg
TrueNetEnergy bed Tot gar ext lts Tot dishHot tmp Avg
BedB tmp Avg CantFlr RH Avg HP1 comp Tot WallScav RH Avg

HP2sup tmp Avg fridge Tot HWHXtoTank tmp Avg LVL1 lts Tot
RoofS HFT Avg Nrake5 tmp Avg AtticFlrS HFT Avg HWcold tmp Avg
bathup lts Tot Shower tmp Avg dryer Tot CondenHWHP Tot
gar ext lts Tot WallScav RH Avg bed Tot HP1 in fan Tot

Table 8: Top 10 Sensors from the Voted Markov Order 1 models per house. The Markov
Order 1 models were constructed by combining all the best Genetic Algorithm subsets, using
the voting process introduced in Section 3.14. Additionally, the best Genetic Algorithm
subsets were computed with missing data values set to zero.
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(a) Saturated Model’s ICOMP

One Two Three
1000

1500

2000

2500

Order

IC
O

M
P

(I
F

IM
)

Rank Stepwise−Subset Model and Rank GA−Subset Model’s
ICOMP(IFIM) Measures on House 1

 

 
Stepwise−Subset Model
GA−Subset Model

(b) GA and Stepwise Models’ ICOMP
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(c) Saturated Model’s Complexity
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(d) GA and Stepwise Models’ Complexity
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(e) Goodness-of-Fit

Figure 22: Experimental results for Campbell Creek House 1’s Rank Models with missing
data values set to zero.
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(a) Saturated and GA Models’ ICOMP
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(b) Stepwise Model’s ICOMP
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(c) Saturated and GA Models’ Complexity
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(d) Stepwise Model’s Complexity
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(e) Goodness-of-Fit

Figure 23: Experimental results for Campbell Creek House 2’s Rank Models with missing
data values set to zero.
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(a) Saturated Model’s ICOMP
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(b) GA and Stepwise Models’ ICOMP
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(c) Saturated Model’s Complexity
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(d) GA and Stepwise Models’ Complexity
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(e) Goodness-of-Fit

Figure 24: Experimental results for Campbell Creek House 3’s Rank Models with missing
data values set to zero.
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(a) Saturated Model’s ICOMP
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(b) GA and Stepwise Models’ ICOMP
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(c) Saturated Model’s Complexity
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(d) GA and Stepwise Models’ Complexity
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(e) Goodness-of-Fit

Figure 25: Experimental results for applying Rank Models across all houses with missing
data values set to zero.
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Houses 1
Sensors Ground Truth Best Model Top 10 Ground Truth Best Model Top 10

CV CV Sensors’ ICOMP ICOMP Sensors’
CV ICOMP

TrueNetEnergy 48.88±0.82 37.26±0.79 57.38±0.87 2190.18±1.40 1902.85±9.55 2139.34±2.34
HW Tot 42.91±0.81 37.26±0.79 57.38±0.87 2183.03±2.32 1902.85±9.55 2139.34±2.34

TrueNetEnergy
HW Tot 41.79±0.78 37.26±0.79 57.38±0.87 2175.27±2.86 1902.85±9.55 2139.34±2.34
dryer Tot

TrueNetEnergy
HW Tot 41.38±0.82 37.26±0.79 57.38±0.87 2167.20±2.94 1902.85±9.55 2139.34±2.34

LVL1 lts Tot
dryer Tot

TrueNetEnergy

Houses 2
Sensors Ground Truth Best Model Top 10 Ground Truth Best Model Top 10

CV CV Sensors’ ICOMP ICOMP Sensors’
CV ICOMP

TrueNetEnergy 47.35±0.95 37.41±0.82 52.57±0.99 2190.10±2.77 1886.09±12.32 2151.20±2.31
HP1 comp Tot 45.48±0.80 37.41±0.82 52.57±0.99 2184.52±3.42 1886.09±12.32 2151.20±2.31
TrueNetEnergy
HP1 comp Tot 44.68±0.77 37.41±0.82 52.57±0.99 2177.17±3.69 1886.09±12.32 2151.20±2.31
HP1ret RH Avg
TrueNetEnergy
HP1 back Tot 43.22±0.66 37.41±0.82 52.57±0.99 2167.64±2.15 1886.09±12.32 2151.20±2.31
HP1 comp Tot
LVL1 lts Tot
wash Tot

Table 9: The House 1 Table compares House 1’s “Restricted Ground Truth” subsets against
the best Markov Order 1 Rank Model seen in Figure 18 and against the Top 10 Sensor list
for House 1 in Table 6. The House 2 Table compares House 2’s “Restricted Ground Truth”
subsets against the best Markov Order 1 Genetic Algorithm Model seen in Figure 7 and the
best Top 10 Sensor list for House 2 (Table 5). Variables with missing data were removed for
these comparisons. The values given are Coefficient of Variance(CV) and ICOMP.
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Houses 3
Sensors Ground Truth Best Model Top 10 Ground Truth Best Model Top 10

CV CV Sensors’ ICOMP ICOMP Sensors’
CV ICOMP

HP1 in fan Tot 56.65±0.81 43.33±0.75 48.16±0.79 2178.24±1.89 1988.68±7.82 2171.15±2.96
HP1 in fan Tot 53.86±0.78 43.33±0.75 48.16±0.79 2172.06±1.46 1988.68±7.82 2171.15±2.96
None Tot(8)

HP1 in fan Tot 50.13±0.78 43.33±0.75 48.16±0.79 2164.38±0.79 1988.68±7.82 2171.15±2.96
wash Tot

None Tot(8)
HP1 in fan Tot 48.96±0.84 43.33±0.75 48.16±0.79 2159.40±0.86 1988.68±7.82 2171.15±2.96

wash Tot
None Tot(8)
Kit tmp Avg

Houses All
Sensors Ground Truth Best Model Top 10 Ground Truth Best Model Top 10

CV CV Sensors’ ICOMP ICOMP Sensors’
CV ICOMP

HP2 in Tot 62.67±1.06 42.40±0.40 46.76±0.49 6558.50±1.66 6221.73±8.22 6488.53±4.95
HP1 in Tot 53.35±0.45 42.40±0.40 46.76±0.49 6549.78±0.87 6221.73±8.22 6488.53±4.95
HP2 out Tot
HP1 in Tot 50.42±0.40 42.40±0.40 46.76±0.49 6541.64±0.93 6221.73±8.22 6488.53±4.95
HP1 out Tot

HP2 in fan Tot
HP1 in Tot 47.79±0.39 42.40±0.40 46.76±0.49 6532.52±1.30 6221.73±8.22 6488.53±4.95
HP1 out Tot

HP2 in fan Tot
LVL1 lts Tot

Table 10: The House 3 Table compares House 1’s “Restricted Ground Truth” subsets against
the best Markov Order 1 Rank Model seen in Figure 20 and against the Top 10 Sensor list
for House 3 in Table 6. The Across All Table compares the “Restricted Ground Truth”
subsets across all houses against the best Markov Order 1 Rank Model seen in Figure 21
and the best Top 10 Sensor list across all houses (Table 6). Variables with missing data
were removed for these comparisons. The values given are Coefficient of Variance(CV) and
ICOMP.
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Houses 1
Sensors Ground Truth Best Model Top 10 Ground Truth Best Model Top 10

CV CV Sensors’ ICOMP ICOMP Sensors’
CV ICOMP

NetEnergy 48.89±0.80 33.31±1.04 40.18±0.82 2189.66±1.12 1843.21±25.73 2126.78±2.39
HW Tot 42.91±0.54 33.31±1.04 40.18±0.82 2182.11±1.16 1843.21±25.73 2126.78±2.39

NetEnergy
HW Tot 41.79±0.66 33.31±1.04 40.18±0.82 2174.03±0.75 1843.21±25.73 2126.78±2.39
dryer Tot
NetEnergy
HW Tot 39.81±0.67 33.31±1.04 40.18±0.82 2166.44±1.24 1843.21±25.73 2126.78±2.39
dryer Tot

washHot tmp Avg
NetEnergy

Houses 2
Sensors Ground Truth Best Model Top 10 Ground Truth Best Model Top 10

CV CV Sensors’ ICOMP ICOMP Sensors’
CV ICOMP

NetEnergy 47.07±1.20 37.32±0.81 50.32±1.34 2189.60±1.79 1821.50±17.78 2158.56±4.13
HP1 comp Tot 45.13±1.17 37.32±0.81 50.32±1.34 2183.42±1.82 1821.50±17.78 2158.56±4.13
NetEnergy

HP1 comp Tot 44.45±1.11 37.32±0.81 50.32±1.34 2176.10±2.25 1821.50±17.78 2158.56±4.13
HP1ret RH Avg

NetEnergy
Nrake2 tmp Avg 43.42±1.09 37.32±0.81 50.32±1.34 2183.45±2.43 1821.50±17.78 2158.56±4.13
Nrake4 tmp Avg
None Tot(23)
NetEnergy

Table 11: The House 1 Table compares House 1’s “Restricted Ground Truth” subsets against
the best Markov Order 1 Rank Model seen in Figure 22 and against the best Top 10 Sensor
list for House 1 (Table 8). The House 2 Table compares House 2’s “Restricted Ground
Truth” subsets against the best Markov Order 1 Genetic Algorithm Model seen in Figure 9
and the best Top 10 Sensor list for House 2 (Table 7). Missing data values were set to zero
for these comparisons. The values given are Coefficient of Variance(CV) and ICOMP.
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Houses 3
Sensors Ground Truth Best Model Top 10 Ground Truth Best Model Top 10

CV CV Sensors’ ICOMP ICOMP Sensors’
CV ICOMP

NetEnergy 51.25±0.83 40.79±0.88 47.51±1.00 2177.34±1.38 1897.62±12.18 2169.82±2.40
None Tot(19) 49.95±0.90 40.79±0.88 47.51±1.00 2171.49±1.38 1897.62±12.18 2169.82±2.40
NetEnergy
None Tot(9) 48.29±0.86 40.79±0.88 47.51±1.00 2164.67±1.50 1897.62±12.18 2169.82±2.40
None Tot(27)
NetEnergy
wash Tot 46.78±0.83 40.79±0.88 47.51±1.00 2157.12±1.27 1897.62±12.18 2169.82±2.40

None Tot(9)
None Tot(27)
NetEnergy

Houses All
Sensors Ground Truth Best Model Top 10 Ground Truth Best Model Top 10

CV CV Sensors’ ICOMP ICOMP Sensors’
CV ICOMP

NetEnergy 50.78±0.73 39.77±0.73 63.00±0.75 6557.90±2.70 5914.91±10.11 6517.21±1.65
HW Tot 47.49±0.72 39.77±0.73 63.00±0.75 6550.04±2.54 5914.91±10.11 6517.21±1.65

NetEnergy
HW Tot 46.42±0.78 39.77±0.73 63.00±0.75 6541.36±2.43 5914.91±10.11 6517.21±1.65
dryer Tot
NetEnergy
HW Tot 45.72±0.75 39.77±0.73 63.00±0.75 6532.55±2.83 5914.91±10.11 6517.21±1.65
dryer Tot

None Tot(14)
NetEnergy

Table 12: The House 3 Table compares House 1’s “Restricted Ground Truth” subsets against
the best Markov Order 1 Rank Model seen in Figure 24 and against the best Top 10 Sensor
list for House 3 (Table 8). The Across All Table compares the “Restricted Ground Truth”
subsets across all houses against the best Markov Order 1 Rank Model seen in Figure 25
and the best Top 10 Sensor list across all houses (Table 8). Missing data values were set to
zero for these comparisons. The values given are Coefficient of Variance(CV) and ICOMP.
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the “Restricted Ground Truth” and the best Genetic Algorithm models with Markov Order
1, seen in Figures 18, 7, 20, and 21. The Genetic Algorithm Models have much better perfor-
mance in terms of CV and ICOMP, which implies that the best performing optimal subset
is larger than the ones we have computed. However, these best performing approximations
use 50 or more sensors. This makes it very difficult to estimate the best performing optimal
subset’s actual size and to estimate whether one can feasibly compute it directly.

Comparing the same “Restricted Ground Truth” CV and ICOMP results with the best
“Top 10 Sensor” lists results shows that the voting scheme is able to produce lower ICOMP
values, but overall worse CV results. This implies solving for a small subset directly is
better than selecting a small subset using our variable ranking procedure. However, if one
is concerned about the best subset being generalizable, then one can solve directly for the
best subset using ICOMP as the criteria function rather than CV.

Tables 11 and 12 illustrate that the best Genetic Algorithm Models with Markov Order
1 in Figures 22, 9, 24, and 25 have better CV and better ICOMP scores than the “Restrict
Ground Truth” subsets. This provides additional evidence that the best performing optimal
subset is larger than four sensors. However, comparing the “Top 10 Sensor” results with the
same “Restricted Ground Truth” results further reinforces that solving for a small subset
directly is better than using our ranking procedure to select a small set of variables.

In summary, if one wishes to find the best performing optimal subset, it is generally
computationally infeasible because computing sensor subsets with four sensors takes three
hours, five sensors takes three to four days, six sensors takes 75 days, and seven or more
sensors takes years. However, one can produce reasonably good approximations using our
approach. On the other hand, if one is interested in solving for a small optimal subset and
one has enough computing resources, then it is best to compute it directly.

6.7 Summary of Findings

The results presented in Sections 6.1, 6.2, 6.3, and 6.4 show that the Genetic Algorithm with
the ICOMP (IFIM) model criteria as the fitness function is able to find better models than
the Stepwise Selection method. In addition, these sections show that the best models were
found with Markov Order 3, and that setting missing values equal to zero is better than
removing sensors that have missing values. Applying our voting technique to the Genetic
Algorithm models allows us to find a better model (Figures 22, 24, and 25) than the best
single Genetic Algorithm model (Figures 5, 13, and 17) on House 1, House 3, and across
all houses. Therefore, on future homes we recommend comparing the best single Genetic
Algorithm model with the model made from our voting process, and then selecting the best
performing model from these two. However, if one is interested in finding the best model for
a sufficiently small sensor subset, e.g., upto 5 sensors, it is recommended that one solve for
this best model directly, because it should be computationally feasible to test all possible
subsets.
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Figure 26: This figure presents one week of electrical consumption for all three residential
homes, from the second week in September, 2010.

7 Discussion

The different performance results for each house stem from the fact that each house is
fundamentally different. These physical differences make each house have a very different
energy response pattern, even though each house is automated to run on the exact same
schedule. Figure 26 illustrates the electrical consumption for a single week in September.
The complexity of the energy patterns exhibited by Houses 2 and 3 make them harder to
predict than House 1. The figure shows that House 3 is prone to sudden drops in electrical
consumption, while House 2’s electrical consumption fluctuates much more frequently. House
1 may appear to fluctuate as sharply as House 2, but the fluctuations are much less on
average. The physical differences certainly impact the physical sensor data, as well.

The results from the Great Energy Predictor Shootout and results from predicting elec-
trical consumption in other commercial buildings have established expected ranges for good
CV values – on the order of 2% to 13%, according to the existing literature. The results
are clearly dependent on the input variables, but a learning approach is generally consid-
ered acceptable if it is within that range. However, we note that our residential results are
not within this range. These results are not due to the learning approaches being imple-
mented incorrectly or poorly. In fact, all learning approaches are implemented using existing
or modified software packages. The LS-SVM implementation is from LS-SVMlab [33], the
SVR implementation is from LIBSVM [6], the HME implementation uses modified software
provided by the authors of [25], and all remaining learning systems are implemented using ex-
isting MATLAB modules provided by Mathworks. Considering the reasonable performance
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Figure 27: This figure presents one week of electrical consumption for the Great Energy
Prediction Shootout building, from the second week in September, 1989.

by most techniques on the Great Energy Prediction Shootout data set and the fact that
all techniques are built using established software, the only possible cause for not matching
the established CV range is each house’s complex energy usage patterns and the physical
differences in the buildings.

Comparing the residential electrical consumption (Figure 26) with the commercial elec-
trical consumption (Figure 27), shows that commercial buildings have fairly stable usage
patterns and less sudden change. The reason for this difference is based purely on the size of
the buildings, and the fact that small variations in consumption do not significantly affect the
overall consumption. A larger building will obviously consume more electricity and contain
more people, which means that the actions of a few individuals turning on lights or using
additional electricity will have very little effect on the buildings’ consumption trend. How-
ever, in a smaller building, minor changes to the environment can cause noticeable effects.
For example, turning all the lights on in most houses will cause more noticeable fluctuation
than turning on the equivalent number of lights in a commercial building.

In addition, residential buildings exhibit more complex usage patterns. Figure 28 illus-
trates three weeks of measured electrical consumption for House 3. The usage patterns are
very similar for the first two weeks and share similar highs and minimums. However, the
usage pattern completely changes during the third week (hours 315 through 500). This vari-
ability is mostly dependent upon the house’s ability to produce solar power, and how much
solar power the house is able to produce. While this figure illustrates changes in consumption
patterns for House 3, changes in consumption patterns are not unique to House 3 and also
occur in Houses 1 and 2. The pattern changes are just more pronounced in House 3.
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Figure 28: This figure presents three weeks of electrical consumption for House 3, starting
from the second week in September, 2010.

The Great Energy Prediction Shootout data set does contain changes in consumption pat-
terns, but these changes correspond with holidays, weekends, and normal vacation periods.
On the other hand, the changes in these residential homes is dependent on environmen-
tal variables and changes in occupant behavior. Thus, these three homes provide a rich
and interesting data set for modeling energy prediction, which is more challenging than the
standard commercial data sets.

According to the results presented in Tables 2, 3, and 4, changing the Markov order
had varying affects. Most techniques applied to House 1 showed a statistically significant
performance increase as the order was increased from 1 to 2. On House 1, fewer techniques
present improvement by increasing the order even further. However, most techniques applied
to Houses 2 and 3 show very little or no performance gains as the order increases. On House
2 only Linear Regression shows statistically significant improvements by increasing the order.
In addition, only two techniques show statistically significant improvement on House 3: HME
with LSSVM and SVR.

There are two possible explanations for these results. First, the temporal dependencies
could extend back much further in time than order 3. Second, the consumption patterns
could change often enough that increasing the past observations does not help predict fu-
ture consumption. The first option is possible, but requires further testing and evaluation.
However, extending the order further without removing irrelevant inputs may cause most
models to perform worse than the ones with smaller orders, due to overfitting. Therefore,
this requires testing higher orders and determining the most relevant inputs for predicting
electrical consumption. We are actively exploring methods for determining the most relevant
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ASHRAE Shootout
S1 S2

CV(%) MBE(%) MAPE(%)
Regression 13.26±0.16 -0.02±0.43 11.64±0.11
FFNN 8.81±0.17 0.01±0.10 7.10±0.09
SVR 9.16±0.23 0.05±0.04 7.48±0.12

LSSVM 8.85±0.18 0.02±0.21 6.95±0.21
RVM 8.87±0.16 -0.03±0.08 7.19±0.15

HME-REG 13.26±0.15 0.03±0.41 11.65±0.10
HME-FFNN 8.74±0.22 -0.02±0.04 7.00±0.11
HME-LSSVM 8.91±0.23 0.02±0.20 7.00±0.19
FCM-REG 10.50±0.27 0.02±0.27 9.00±0.25
FCM-FFNN 8.74±0.26 0.05±0.24 6.99±0.21
FCM-LSSVM 8.82±0.17 -0.00±0.13 6.97±0.23

CV(%) MBE(%) MAPE(%)
Regression 4.01±0.35 0.00±0.27 2.71±0.08
FFNN 2.29±0.16 0.06±0.12 1.51±0.05
SVR 3.27±0.36 0.09±0.16 1.90±0.12

LSSVM 3.77±0.44 -0.07±0.08 2.13±0.20
RVM 2.33±0.15 0.01±0.04 1.51±0.01

HME-REG 4.01±0.35 0.01±0.29 2.70±0.10
HME-FFNN 2.20±0.19 -0.03±0.07 1.39±0.01
HME-LSSVM 3.89±0.42 -0.08±0.09 2.21±0.18
FCM-REG 3.48±0.35 0.00±0.21 2.22±0.09
FCM-FFNN 2.17±0.17 0.01±0.11 1.38±0.00
FCM-LSSVM 3.88±0.46 -0.11±0.09 2.17±0.21

Table 13: Great Energy Prediction Shootout results using 3-Folds. The data set’s order
was randomized before being divided into folds. Each test set has approximately the same
number of examples as the original competition test set. Best results are shown in bold font.

inputs, but reporting these results is beyond the scope of this paper.
The second option is the most plausible explanation. Houses 2 and 3 change consumption

patterns fairly often, and are dependent on future events that are not always represented
within past observations. For example, House 3’s ability to generate solar power is dependent
on external weather events that are not guaranteed to follow a regular pattern. However,
House 2 is more difficult to explain. House 2’s consumption pattern changes regularly,
except that there are periods where the electrical consumption sporadically increases more
than the normal trends. These instantaneous changes in patterns are not represented by
past observations, which means increasing the order will not necessarily help.

Our residential results establish that LSSVM is the best technique from the ones we
explored. However, the Shootout results establish that this technique only performs better
than HME with Linear Regression and Linear Regression. Clearly the LSSVM approach
learns a model that fails to generalize to the Shootout testing data. The model failed to
generalize because the provided training data is not general. The electrical response signal for
the training data and testing data are statistically different, but LS-SVM uses every training
example to help define its model. This means that the LSSVM method builds a model that
expects the testing response to resemble the observed training response. However, in this
situation the electrical consumption pattern changes and the LSSVM model is not able to
predict these changes. We were able to test this idea by randomizing the Shootout training
and testing data, such that the sets were more similar.

Our experiments with this modified data set show a performance increase for most tech-
niques (Table 13). More importantly, LSSVM is now a more competitive learning algorithm
on this data set when presented with a more general training set. In our residential exper-
iments, we shuffled the data sets before dividing the data into folds. This allowed us to
perform all experiments with training and testing data sets that covered a wide range of
different scenarios. Ultimately, we plan to train all methods on the entire 2010 Campbell
Creek data set, and perform tests on the entire 2011 Campbell Creek data set once the year
is complete.
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8 Conclusion and Future Work

Given sensor data collected from three residential homes, we aimed to determine which
machine learning technique performed best at predicting whole building energy consumption
for the next hour. Our results show that LSSVM is the best technique for modeling each
residential home. In addition, our results show that the previously accepted method, FFNNs,
performs worse than the newer techniques explored in this work: HME-FFNN, LSSVM, and
FCM-FFNN. Lastly, our results show that SVR and LSSVM perform almost equally with
respect to CV and MAPE. However, experiments with SVR present poor MBE results, which
makes LSSVM the preferred technique.

In addition, we validated our methods by producing comparable results on the Great
Energy Prediction Shootout data set. These validation results are consistent with the existing
literature in concluding that FFNN performs best on the original competition data set, and
that other types of Neural Networks might perform even better. In addition, our results
show that the LSSVM is the worst performing technique for the Shootout data set, and that
shuffling the data improves its performance.

In addition, we aimed to determine which sensors are most important for predicting whole
building energy consumption for the next hour. We demonstrated that a Genetic Algorithm
used with the ICOMP (IFIM) multi-objective criteria function is able to reduce model
complexity, while still giving a reasonable goodness-of-fit. Additionally, we illustrated that
the Stepwise Selection method is sometimes capable of producing smaller sensor subsets than
the Genetic Algorithm approach, but the Stepwise Selection models are rarely less complex
than the models generated by the Genetic Algorithm, even when the Genetic Algorithm
includes additional sensors within the model. We introduced a method for ranking the
sensors by combining all best models found from the Wrapper techniques, which was able
to produce the best models for House 1, House 3, and across all houses. Additionally, using
the ranking techniques and Wrapper methods we were able to illustrate some of the effects
missing values had on the algorithms. Stepwise Selection performed better when all missing
values were set to zero, and the Genetic Algorithm method was fairly indifferent to the
missing data approaches. However, it found its best results generally when missing values
were set to zero. Lastly, we compared our approach against the best possible subsets up
to size four, which showed that it is computationally infeasible to directly compute a large
enough subset that approximates the true best subset. Therefore, the Genetic Algorithm
method is the ideal approach for future sensor subset selection.

In future work, we will explore sensor selection with the other machine learning techniques
presented in this report. The selected sensors are dependent upon the machine learning
technique that is being used to optimize the ICOMP (IFIM) criteria function. Therefore,
it is imperative to explore the solutions proposed by the other prediction techniques presented
within this report. In addition, exploring sensor selection with the best performing technique,
LSSVM, will hopefully provide the best sensor subsets. These subsets should help offset
future cost for other building studies by reducing the number of installed sensors.
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